This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118271 Expansion of (9 * theta_4(q^3)^4 - theta_4(q)^4) / 8 in powers of q. 3
 1, 1, -3, -5, -3, 6, 15, 8, -3, -23, -18, 12, 15, 14, -24, -30, -3, 18, 69, 20, -18, -40, -36, 24, 15, 31, -42, -77, -24, 30, 90, 32, -3, -60, -54, 48, 69, 38, -60, -70, -18, 42, 120, 44, -36, -138, -72, 48, 15, 57, -93, -90, -42, 54, 231, 72, -24, -100, -90, 60, 90, 62, -96, -184, -3, 84, 180, 68, -54, -120, -144 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA Expansion of eta(q^2)^5 * et(q^3)^3 / (eta(q) * eta(q^6)^3) in powers of q. Expansion of b(q^2) * (4*b(q^4) - b(q)) / 3 in powers of q where b() is a cubic AGM theta function. Euler transform of period 6 sequence [ 1, -4, -2, -4, 1, -4, ...]. a(n) is multiplicative with a(2^e) = -3 if e>0, a(3^e) = 4 - 3^(e+1), a(p^e) = (p^(e+1) - 1) / (p - 1) if p>3. a(3*n) = A109506(3*n). a(3*n + 1) = A109056(3*n + 1). a(3*n + 2) = -3 * A118272(n). EXAMPLE 1 + q - 3*q^2 - 5*q^3 - 3*q^4 + 6*q^5 + 15*q^6 + 8*q^7 - 3*q^8 - ... PROG (PARI) {a(n) = if( n<0, 0, polcoeff( sum( k=1, sqrtint(n), 2 * (-x)^k^2, 1 + x * O(x^n))^4 - 9 * sum( k=1, sqrtint(n\3), 2 * (-x^3)^k^2, 1 + x * O(x^n))^4, n) / -8)} (PARI) {a(n) = if( n<1, n==0, -(-1)^n * ( sumdiv( n, d, d * (1 - if( d%3==0, 3) - if( d%4==0, 1) + if(d%12==0, 3)))))} (PARI) {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, -3, if( p==3, 4 - 3^(e+1), (p^(e+1) - 1) / (p - 1))))))} (PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^3 + A)^3 / eta(x + A) / eta(x^6 + A)^3, n))} CROSSREFS Cf. A109056, A118272. Sequence in context: A100667 A096438 A214456 * A095366 A029604 A079602 Adjacent sequences:  A118268 A118269 A118270 * A118272 A118273 A118274 KEYWORD sign,mult AUTHOR Michael Somos, Apr 21 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .