login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Least nonnegative integer whose binary representation does not occur in the concatenation of the binary representations of all earlier terms.
17

%I #44 Aug 20 2017 10:02:46

%S 0,1,2,4,7,8,11,16,18,21,22,25,29,31,32,35,36,38,40,58,64,67,68,70,75,

%T 76,78,87,88,90,93,99,101,104,107,122,128,131,133,134,136,138,140,144,

%U 148,150,152,155,156,159,161,169,170,172,178,183,188,190

%N Least nonnegative integer whose binary representation does not occur in the concatenation of the binary representations of all earlier terms.

%C Otherwise said: Omit numbers whose binary representation already occurs in the concatenation of the binary representation of earlier terms. As such, a binary analog of A048991 / A048992 (Hannah Rollman's numbers), rather than "early bird" binary numbers A161373. - _M. F. Hasler_, Jan 03 2013

%H Rainer Rosenthal, <a href="/A118248/b118248.txt">Table of n, a(n) for n = 0..9999</a>

%H Nick Hobson, <a href="/A118248/a118248.py.txt">Python program for this sequence</a>

%t Block[{b = {{0}}, a = {0}, k, d}, Do[k = FromDigits[#, 2] &@ Last@ b + 1; While[SequenceCount[Flatten@ b, Set[d, IntegerDigits[k, 2]]] > 0, k++]; AppendTo[b, d]; AppendTo[a, k], {i, 57}]; a] (* _Michael De Vlieger_, Aug 19 2017 *)

%o (PARI) A118248(n,show=0,a=0)={my(c=[a],find(t,s,L)=L || L=#s; for(i=0,#t-L, vecextract( t,(2^L-1)<<i )==s & return(1))); for(k=1,n, show && print1(a","); while( find(c,binary(a++)),); c=concat(c,binary(a)));a} \\ _M. F. Hasler_, Jan 03 2013

%o (Perl) $s="";$i=0;do{$i++;$b=sprintf("%b",$i);if(index($s,$b)<0){print("$i=$b\n");$s.=$b}}while(1);

%Y Cf. A118247 (concatenation of binary representations), A118250, A118252 (variants where binary representations are reversed).

%K easy,nonn

%O 0,3

%A _Leroy Quet_, Apr 18 2006

%E More terms from _Graeme McRae_, Apr 19 2006

%E Explicit definition from _M. F. Hasler_, Dec 29 2012

%E Perl program by _Phil Carmody_, Mar 19 2015

%E Crossref and Perl program by _Phil Carmody_, Mar 19 2015