login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118228 Decimal expansion of the Heath-Brown-Moroz constant. 1
0, 0, 1, 3, 1, 7, 6, 4, 1, 1, 5, 4, 8, 5, 3, 1, 7, 8, 1, 0, 9, 8, 1, 7, 3, 5, 2, 3, 2, 2, 5, 1, 3, 5, 8, 5, 9, 5, 1, 2, 5, 0, 7, 3, 4, 3, 2, 3, 2, 9, 5, 2, 5, 1, 6, 7, 8, 7, 9, 2, 5, 4, 7, 4, 2, 1, 7, 8, 6, 0, 2, 3, 4, 4, 4, 0, 9, 6, 1, 0, 8, 9, 5, 0, 9, 0, 8, 3, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

Steven R. Finch, Mathematical Constants. Cambridge, England: Cambridge University Press, p. 106, 2003.

LINKS

Paolo P. Lava, Table of n, a(n) for n = 0..1000

David R. Heath-Brown and Boris Z. Moroz, The density of rational points on the cubic surface X_0^3 = X_1 X_2 X_3, Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 125, No. 3 (1999), pp. 385 - 395; alternative link.

Pieter Moree, 1000-digit values of Heath-Brown-Moroz Constant, Max-Planck-Institut for Mathematic.

Eric Weisstein's World of Mathematics, Prime Products.

Eric Weisstein's World of Mathematics, Heath-Brown-Moroz Constant.

FORMULA

Equals Product_{p=prime}{(1 - 1/p)^7 * [1+(7*p+1)/p^2]}.

EXAMPLE

0.001317641154853178109...

PROG

(PARI) prodeulerrat((1-1/p)^7 * (1+(7*p+1)/p^2)) \\ Amiram Eldar, Feb 12 2021

CROSSREFS

Cf. A000040.

Sequence in context: A323663 A205298 A046913 * A245684 A082053 A322753

Adjacent sequences:  A118225 A118226 A118227 * A118229 A118230 A118231

KEYWORD

nonn,cons

AUTHOR

Eric W. Weisstein, Apr 16 2006

EXTENSIONS

a(65) corrected by Paolo P. Lava, Apr 07 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 14 03:36 EDT 2021. Contains 342941 sequences. (Running on oeis4.)