%I #5 Mar 30 2012 18:39:53
%S 10282339,10306511,32667367,102615679,105709573,107647367,107776891,
%T 113265953,198471113,324580307,981466259,982322251,983075549,
%U 1001315129,1002340429,1004157421,1005362971,1007811719,1008125953,1099887589
%N Prime numbers p such that the reversal of all the five numbers p, p^2, p^3, p^4 and p^5 are primes.
%C 9835884797 is the smallest term such that the reversal of p^6 is also prime. - _Hans Havermann_, Apr 22 2006
%e p=10282339 is in the sequence because p is prime; reversal(p^k)
%e for k=1,2,...,5 are respectively 93328201, 129013594627501,
%e 9124210088606665117801, 14286816400200203701819087111 &
%e 996592728588610999557150173929639411 and these five numbers
%e are primes.
%t Do[If[n=Prime[m];PrimeQ[FromDigits[Reverse[IntegerDigits[n]]]] && PrimeQ[FromDigits[Reverse[IntegerDigits[n^2]]]] && PrimeQ [FromDigits[Reverse[IntegerDigits[n^3]]]] && PrimeQ[FromDigits [Reverse[IntegerDigits[n^4]]]] && PrimeQ[FromDigits[Reverse [IntegerDigits[n^5]]]], Print[n]], {m, 56000000}]
%Y Cf. A118212.
%K base,nonn
%O 1,1
%A _Farideh Firoozbakht_, Apr 21 2006