This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118209 Expansion of Sum_{k>=1} lambda(k) * k * x^k/(1 + x^k) where lambda(k) is the Liouville function, A008836. 2
 1, -3, -2, 5, -4, 6, -6, -11, 7, 12, -10, -10, -12, 18, 8, 21, -16, -21, -18, -20, 12, 30, -22, 22, 21, 36, -20, -30, -28, -24, -30, -43, 20, 48, 24, 35, -36, 54, 24, 44, -40, -36, -42, -50, -28, 66, -46, -42, 43, -63, 32, -60, -52, 60, 40, 66, 36, 84, -58, 40, -60, 90, -42, 85, 48, -60, -66, -80, 44, -72, -70, -77, -72, 108, -42 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Related to the logarithmic derivative of A118207(x) and A118208(x). Related to a signed variant of A022998 via Mobius inversion. - R. J. Mathar, Jul 03 2011 LINKS FORMULA a(n) = Sum_{d|n} (-1)^(n/d - 1)*lambda(d)*d, Dirichlet convolution of A061019 and A062157. G.f.: A(x) is x times the logarithmic derivative of A118207(x). G.f.: A(x) = A061020(x) - 2 A061020(x^2). Dirichlet g.f.: zeta(s)*zeta(2s-2)*(1-2^(1-s))/zeta(s-1). - R. J. Mathar, Jul 03 2011 a(n) > 0 for n in A028260. - Michel Marcus, Dec 10 2016 MATHEMATICA nmax = 80; lambda[k_Integer?Positive] := If[ k > 1, (-1)^Total[ Part[Transpose[FactorInteger[k]], 2] ], 1 ]; Drop[ CoefficientList[ Series[ Sum[ lambda[k] k x^k/(1 + x^k), {k, 1, nmax} ], {x, 0, nmax} ], x ], 1 ] PROG (PARI) a(n) = sumdiv(n, d, (-1)^(n/d - 1)*(-1)^vecsum(factor(d)[, 2])*d) \\ Michel Marcus, Dec 10 2016 CROSSREFS Cf. A028260, A008836, A117212, A118207, A118208. Sequence in context: A049820 A109712 A095049 * A109451 A160017 A266154 Adjacent sequences:  A118206 A118207 A118208 * A118210 A118211 A118212 KEYWORD sign,easy,mult AUTHOR Stuart Clary, Apr 15 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 14 09:25 EDT 2019. Contains 327995 sequences. (Running on oeis4.)