Cyclotomic polynomials and the generating functions of A118205 and A118206

Peter Bala, April 092023

The generating functions of A118205 and A118206 are the infinite products

$$
\begin{align*}
& \operatorname{G118205(x)}=\prod_{n \geq 1}\left(1-x^{n}\right)^{\lambda(n)} \tag{1}\\
& \operatorname{G118206}(x)=\prod_{n \geq 1}\left(1-x^{n}\right)^{-\lambda(n)} \tag{2}
\end{align*}
$$

where

$$
\lambda(n)=\sum_{d^{2} \mid n} \mu\left(\frac{n}{d^{2}}\right)
$$

is the Liouville function [3].
We find alternative expressions for these generating functions as infinite products of cyclotomic polynomials. All our products are formal products.

The n-th cyclotomic polynomial $C_{n}(x)$ is equal to the rational fraction

$$
\begin{equation*}
C_{n}(x)=\prod_{d \mid n}\left(1-x^{d}\right)^{\mu\left(\frac{n}{d}\right)} \quad \text { for } n \geq 2 \tag{3}
\end{equation*}
$$

with $C_{1}(x)=x-1$ (see, for example, [2]), where $\mu(n)$ is the Möbius function and the product is taken over the divisors d of n.

Proposition 1. The generating function of A118205 is $-\prod_{n \geq 1} C_{n}\left(x^{n}\right)$

Proof. We have by (3)

$$
\begin{aligned}
& -\prod_{n \geq 1} C_{n}\left(x^{n}\right)=(1-x) \prod_{n \geq 2}\left(\prod_{d \mid n}\left(1-x^{n d}\right)^{\mu\left(\frac{n}{d}\right)}\right) \\
& =(1-x) \prod_{N \geq 2}\left(\prod_{\substack{N=n d \\
d \mid n}}\left(1-x^{N}\right)^{\mu\left(\frac{N}{d^{2}}\right)}\right) \\
& =(1-x) \prod_{N \geq 2}\left(\prod_{d^{2} \mid N}\left(1-x^{N}\right)^{\mu\left(\frac{N}{d^{2}}\right)}\right) \\
& =\prod_{N \geq 1}\left(1-x^{N}\right)^{\sum_{d^{2} \mid N}} \mu\left(\frac{N}{d^{2}}\right) \\
& =\prod_{N \geq 1}\left(1-x^{N}\right)^{\lambda(N)} \\
& =\mathrm{G} 118205(x) \text { by (1). }
\end{aligned}
$$

We recall the following properties of the cyclotomic polynomials ([1], p. 160).

Let p be a prime number and n be a positive integer. Then

$$
C_{p n}(x)= \begin{cases}C_{n}\left(x^{p}\right) & \text { if } p \mid n \tag{A}\\ \frac{C_{n}\left(x^{p}\right)}{C_{n}(x)} & \text { if } p \nmid n\end{cases}
$$

The particular case of (B) when $p=2$ is

$$
\begin{equation*}
C_{2 n}(x)=\frac{C_{n}\left(x^{2}\right)}{C_{n}(x)} \quad \text { for } n \text { odd } \tag{4}
\end{equation*}
$$

By a simple induction argument using (A), we find that

$$
\begin{equation*}
C_{2^{k} n}(x)=C_{2 n}\left(x^{2^{k-1}}\right) \quad \text { for } n \text { odd, } k \geq 1 \tag{5}
\end{equation*}
$$

Hence, by (4),

$$
\begin{equation*}
C_{2^{k} n}(x)=\frac{C_{n}\left(x^{2^{k}}\right)}{C_{n}\left(x^{2^{k-1}}\right)} \text { for } n \text { odd, } k \geq 1 \tag{6}
\end{equation*}
$$

In (6), replace x with $x^{2^{k-1}}$ to give

$$
\begin{equation*}
C_{2^{k} n}\left(x^{2^{k-1}}\right)=\frac{C_{n}\left(x^{2^{2 k-1}}\right)}{C_{n}\left(x^{2^{2 k-2}}\right)} \text { for } n \text { odd, } k \geq 1 \tag{7}
\end{equation*}
$$

In (7), replace x with x^{2} to give

$$
\begin{equation*}
C_{2^{k} n}\left(x^{2^{k}}\right)=\frac{C_{n}\left(x^{2^{2 k}}\right)}{C_{n}\left(x^{2^{2 k-1}}\right)} \text { for } n \text { odd, } k \geq 1 \tag{8}
\end{equation*}
$$

Proposition 2. The generating function of A118206 is $\prod_{n \geq 1} C_{2 n}\left(x^{n}\right)$.

Proof. We have

$$
\begin{aligned}
\prod_{n \geq 1} C_{2 n}\left(x^{n}\right) & =\prod_{n \text { odd }} C_{2 n}\left(x^{n}\right) C_{4 n}\left(x^{2 n}\right) C_{8 n}\left(x^{4 n}\right) C_{16 n}\left(x^{8 n}\right) \cdots \\
& =\prod_{n \text { odd }}\left(\frac{C_{n}\left(x^{2 n}\right)}{C_{n}\left(x^{n}\right)}\right)\left(\frac{C_{n}\left(x^{8 n}\right)}{C_{n}\left(x^{4 n}\right)}\right)\left(\frac{C_{n}\left(x^{32 n}\right)}{C_{n}\left(x^{16 n}\right)}\right)\left(\frac{C_{n}\left(x^{128 n}\right)}{C_{n}\left(x^{64 n}\right)}\right) \cdots \quad \text { using (7) } \\
& =-\prod_{n \text { odd }} \frac{1}{C_{n}\left(x^{n}\right)}\left(\frac{C_{n}\left(x^{2 n}\right)}{C_{n}\left(x^{4 n}\right)}\right)\left(\frac{C_{n}\left(x^{8 n}\right)}{C_{n}\left(x^{16 n}\right)}\right)\left(\frac{C_{n}\left(x^{32 n}\right)}{C_{n}\left(x^{64 n}\right)}\right) \cdots \\
& =-\prod_{n \text { odd }} \frac{1}{C_{n}\left(x^{n}\right)} \frac{1}{C_{2 n}\left(x^{2 n}\right)} \frac{1}{C_{4 n}\left(x^{4 n}\right)} \frac{1}{C_{8 n}\left(x^{8 n}\right)} \cdots \quad \text { using (8) } \\
& =-\prod_{n \geq 1} \frac{1}{C_{n}\left(x^{n}\right)} \\
& =\operatorname{G118206(x)}
\end{aligned}
$$

since the g.f. of A118206 is the reciprocal of the g.f. of A118205, which is equal to $-1 / \prod_{n \geq 1} C_{n}\left(x^{n}\right)$ by Proposition 1 .

References

[1] T. Nagell, "The Cyclotomic Polynomials" and "The Prime Divisors of the Cyclotomic Polynomial." §46 and 48 in Introduction to Number Theory. New York: Wiley, pp. 158-160 and 164-168, 1951.
[2] Wikipedia, Liouville function
[3] Wikipedia, Cyclotomic polynomial

