The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A118186 Row sums of triangle A118185: a(n) = Sum_{k=0..n} (4^k)^(n-k) for n>=0. 2
 1, 2, 6, 34, 386, 8706, 395266, 35659778, 6476038146, 2336999211010, 1697654543745026, 2450521284684021762, 7120479243447937531906, 41112924905741324849774594, 477847273163370530909175414786 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Also equals column 0 of the matrix square of triangle A118185, where [A118185^2](n,k) = a(n-k)*(4^k)^(n-k) for n >= k >= 0. LINKS FORMULA G.f.: A(x) = Sum_{n>=0} x^n/(1-4^n*x). G.f.: Sum_{n>=1} a(n)*x^n/2^(n^2) = [ Sum_{n>=0} x^n/2^(n^2) ]^2. - Paul D. Hanna, Oct 14 2009 EXAMPLE A(x) = 1/(1-x) + x/(1-4x) + x^2/(1-16x) + x^3/(1-64x) + ... = 1 + 2*x + 6*x^2 + 34*x^3 + 386*x^4 + 8706*x^5 + ... From Paul D. Hanna, Oct 14 2009: (Start) Another g.f.: [1 + x/2^1 + x^2/2^4 + x^3/2^9 + x^4/2^16 + ...]^2 = 1 + 2*x/2^1 + 6*x^2/2^4 + 34*x^3/2^9 + 386*x^4/2^16 + ... (End) PROG (PARI) a(n)=sum(k=0, n, (4^k)^(n-k) ) (PARI) {a(n)=2^(n^2)*polcoeff(sum(m=0, n, x^m/2^(m^2)+x*O(x^n))^2, n)} \\ Paul D. Hanna, Oct 14 2009 CROSSREFS Cf. A118185 (triangle), A118187 (antidiagonal sums). Sequence in context: A076863 A191742 A181082 * A317080 A075272 A224913 Adjacent sequences:  A118183 A118184 A118185 * A118187 A118188 A118189 KEYWORD nonn AUTHOR Paul D. Hanna, Apr 15 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 17 12:32 EST 2020. Contains 331996 sequences. (Running on oeis4.)