%I #6 Mar 30 2012 18:50:54
%S 1,3,11,43,35,162,311,1203,2405,2769,4257,5772,9639,18711,13860,40635,
%T 39270,61425,45045,75075,107415,53865,159075,239085,197505,225225,
%U 137445,621621,373065,634095,812175,412335,1036035,1119195,883575,1673595
%N Smallest term in the Hofstadter sequence A005243 having exactly n representations as sum of consecutive earlier terms.
%C a(n) = A005243(A118165(n)).
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HofstadterSequences.html">Hofstadter Sequences</a>
%e a(8) = A005243(A118165(8)) = A005243(2210) = 2405:
%e #1: 1203 + 1202 = Sum(A005243[1049:1050]) = 2405,
%e #2: 803 + 802 + 800 = Sum(A005243[671:673]) = 2405,
%e #3: 483 + 482 + 481 + 480 + 479 = Sum(A005243[382:386]),
%e #4: 306 + 304 + 302 + 301 + 300 + 299 + 297 + 296 =
%e Sum(A005243[224:231]) = 2405,
%e #5: 224 + 223 + 222 + 221 + 220 + 219 + 218 + 216 + 215 +
%e 214 + 213 = Sum(A005243[153:163]) = 2405,
%e #6: 145 + 143 + 142 + 141 + 140 + 139 + 138 + 137 + 135 +
%e 134 + 132 + 130 + 129 + 127 + 126 + 124 + 122 + 121 =
%e Sum(A005243[82:99]) = 2405,
%e #7: 129 + 127 + 126 + 124 + 122 + 121 + 119 + 118 + 117 +
%e 116 + 115 + 113 + 112 + 111 + 110 + 108 + 106 + 105 +
%e 104 + 102 + 100 = Sum(A005243[67:87]) = 2405,
%e #8: 95 + 94 + 93 + 92 + 91 + 90 + 88 + 87 + 86 + 84 + 82 +
%e 81 + 80 + 78 + 77 + 76 + 75 + 73 + 72 + 71 + 70 + 69 + 68 +
%e 67 + 65 + 62 + 60 + 59 + 58 + 57 + 54 + 51 =
%e Sum(A005243[32:63]) = 2405.
%Y Cf. A118164.
%K nonn
%O 0,2
%A _Reinhard Zumkeller_, Apr 13 2006
%E a(15)-a(35) from _Donovan Johnson_, Feb 16 2011