OFFSET
3,2
LINKS
A. Mednykh and R. Nedela, Counting unrooted hypermaps on closed orientable surface, 18th Intern. Conf. Formal Power Series & Algebr. Comb., Jun 19, 2006, San Diego, California (USA).
A. Mednykh and R. Nedela, Enumeration of unrooted hypermaps of a given genus, Discr. Math., 310 (2010), 518-526. [From N. J. A. Sloane, Dec 19 2009]
Mednykh, A.; Nedela, R. Recent progress in enumeration of hypermaps, J. Math. Sci., New York 226, No. 5, 635-654 (2017) and Zap. Nauchn. Semin. POMI 446, 139-164 (2016), table 3.
Timothy R. Walsh, Space-efficient generation of nonisomorphic maps and hypermaps
T. R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3
MAPLE
Phi2 := proc(l)
local a, k ;
a := 0 ;
for k in numtheory[divisors](l) do
a := a+numtheory[mobius](l/k)*k^2 ;
end do:
a ;
end proc:
h0 := proc(m)
if type(m, integer) then
binomial(2*m, m)*3*2^(m-1)/(m+1)/(m+2) ;
else
0;
end if;
end proc:
h1 := proc(n)
local a;
a := 0 ;
if n >= 3 and type(n, integer) then
a := add(2^k*(4^(n-2-k)-1)*binomial(n+k, k), k=0..n-3) ;
end if;
a/3 ;
end proc:
A118094 := proc(n)
binomial(n/2+2, 4)*h0(n/2) ;
%+2*binomial(n/3+2, 3)*h0(n/3) ;
%+6*binomial(n/4+2, 3)*h0(n/4) ;
a := %+12*binomial(n/6+2, 3)*h0(n/6) ;
for l in numtheory[divisors](n) do
if modp(n, l) = 0 then
a := a+h1(n/l)*Phi2(l) ;
end if;
end do:
a/n ;
end proc:
seq(A118094(n), n=3..14) ; # R. J. Mathar, Dec 17 2014
MATHEMATICA
h0[n_] := If[Denominator[n] == 1, 3*2^(n-1)*Binomial[2*n, n]/((n+1)*(n+2)), 0]; h1[n_] := Sum[(4^(n-2-k)-1)*Binomial[n+k, k]*2^k, {k, 0, n-3}]/3; phi2[n_] := Sum[MoebiusMu[n/d]*d^2, {d, Divisors[n]}]; a[n_] := (Binomial[n/2+2, 4]*h0[n/2] + 2*Binomial[n/3+2, 3]*h0[n/3]+6*Binomial[n/4+2, 3]*h0[n/4] + 12*Binomial[n/6+2, 3]*h0[n/6] + Sum[ phi2[d]*h1[n/d], {d, Divisors[n]}])/n; Table[a[n], {n, 3, 22}] (* Jean-François Alcover, Dec 18 2014, translated from PARI *)
PROG
(PARI) h0(n) = if(denominator(n)==1, 3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2)), 0);
h1(n) = sum(k=0, n-3, (4^(n-2-k)-1)*binomial(n+k, k)<<k)/3;
phi2(n) = sumdiv(n, d, moebius(n/d)*d^2); a(n) = (binomial(n/2+2, 4)*h0(n/2) + 2*binomial(n/3+2, 3)*h0(n/3) + 6*binomial(n/4+2, 3)*h0(n/4) + 12*binomial(n/6+2, 3)*h0(n/6) + sumdiv(n, d, phi2(d)*h1(n/d)))/n; \\ Michel Marcus, Dec 11 2014 ; corrected by Charles R Greathouse IV, Dec 17 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Valery A. Liskovets, Apr 13 2006
STATUS
approved