login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118064 Decimal expansion of the sum of the reciprocals of the palindromic primes A002385 (Honaker's constant). 2

%I

%S 1,3,2,3,9,8,2,1,4,6,8,0,6

%N Decimal expansion of the sum of the reciprocals of the palindromic primes A002385 (Honaker's constant).

%C From _Robert G. Wilson v_, Nov 01 2010: (Start)

%C n \ sum to 10^n

%C 02 1.267099567099567099567099567099567099567099567099567099567099567099567

%C 03 1.320723244590290964212793334437872849720871258315369002493912638038324

%C 05 1.323748402250648554164425746280035962754669829327727800040192015109270

%C 07 1.323964105671202458016249150576217276147952428601889817773483085610332

%C 09 1.323980718065525060936354534562000413901564393192688451911141729415146

%C 11 1.323982026479475203850120990923294207966175748395470136325039323549015

%C 13 1.323982136437462724794656629740867909978221153827990721566573347887836

%C 15 1.323982145891606234777299440047139038371441916546100653011463101470839

%C 17 1.323982146724859090645464845257681674740147563533254654075059843860490

%C 19 1.323982146799188851138232927173756400348958236915409881890097448921521

%C 21 1.323982146805857558347279363344557427339916178257233985191868031567947 (End)

%C Given the ratios of successive first differences in the values listed above, it seems very clear that the next term is a 4; the term after that seems most likely to be a 5. - _Jon E. Schoenfield_, Nov 25 2018

%H Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_056.htm">Problems & Puzzles: Puzzle 056 - Honaker's Constant</a>.

%H Eric Weisstein, <a href="http://mathworld.wolfram.com/PalindromicPrime.html">Palindromic Prime</a>.

%F Equals Sum_{p} 1/p, where p ranges over the palindromic primes.

%e 1.323982146806...

%t (* first obtain nextPalindrome from A007632 *) s = 1/11; c = 1; pp = 1; Do[ While[pp < 10^n, If[PrimeQ@ pp, c++; s = N[s + 1/pp, 64]]; pp = NextPalindrome@ pp]; If[ OddQ@ n, pp = 10^(n + 1); Print[{s, n, c}]], {n, 17}] (* _Robert G. Wilson v_, May 31 2009 *)

%t generate[n_] := Block[{id = IntegerDigits@n, insert = {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}}, FromDigits@ Join[id, #, Reverse@ id] & /@ insert]; sm = N[Plus @@ (1/{2, 3, 5, 7, 11}), 64]; k = 1; Do [While[k < 10^n, sm = N[sm + Plus @@ (1/Select[ generate@k, PrimeQ]), 128]; k++ ]; Print[{2 n + 1, sm}], {n, 9}] (* _Robert G. Wilson v_, Nov 01 2010 *)

%Y Cf. A002385, A160910, A181442, A050251, A118031, A194097.

%K cons,base,nonn,hard,more

%O 1,2

%A _Martin Renner_, May 11 2006

%E Corrected by _Eric W. Weisstein_, May 14 2006

%E More terms from _Robert G. Wilson v_, Nov 01 2010

%E Entry revised by _N. J. A. Sloane_, May 05 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 15:02 EST 2018. Contains 318098 sequences. (Running on oeis4.)