login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A118064 Decimal expansion of the sum of the reciprocals of the palindromic primes A002385 (Honaker's constant). 2

%I

%S 1,3,2,3,9,8,2,1,4,6,8,0,6

%N Decimal expansion of the sum of the reciprocals of the palindromic primes A002385 (Honaker's constant).

%C From _Robert G. Wilson v_, Nov 01 2010:

%C n \ sum to 10^n

%C 02 1.267099567099567099567099567099567099567099567099567099567099567099567

%C 03 1.320723244590290964212793334437872849720871258315369002493912638038324

%C 05 1.323748402250648554164425746280035962754669829327727800040192015109270

%C 07 1.323964105671202458016249150576217276147952428601889817773483085610332

%C 09 1.323980718065525060936354534562000413901564393192688451911141729415146

%C 11 1.323982026479475203850120990923294207966175748395470136325039323549015

%C 13 1.323982136437462724794656629740867909978221153827990721566573347887836

%C 15 1.323982145891606234777299440047139038371441916546100653011463101470839

%C 17 1.323982146724859090645464845257681674740147563533254654075059843860490

%C 19 1.323982146799188851138232927173756400348958236915409881890097448921521

%C 21 1.323982146805857558347279363344557427339916178257233985191868031567947

%H Carlos Rivera: <a href="http://www.primepuzzles.net/puzzles/puzz_056.htm">Problems & Puzzles: Puzzle 056 - Honaker's Constant</a>.

%H Eric Weisstein: <a href="http://mathworld.wolfram.com/PalindromicPrime.html">Palindromic Prime</a>.

%F Equals Sum_{p} 1/p, where p ranges over the palindromic primes.

%e 1.323982147...

%t (* first obtain nextPalindrome from A007632 *) s = 1/11; c = 1; pp = 1; Do[ While[pp < 10^n, If[PrimeQ@ pp, c++; s = N[s + 1/pp, 64]]; pp = NextPalindrome@ pp]; If[ OddQ@ n, pp = 10^(n + 1); Print[{s, n, c}]], {n, 17}] (* _Robert G. Wilson v_, May 31 2009 *)

%t generate[n_] := Block[{id = IntegerDigits@n, insert = {{0}, {1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}}}, FromDigits@ Join[id, #, Reverse@ id] & /@ insert]; sm = N[Plus @@ (1/{2, 3, 5, 7, 11}), 64]; k = 1; Do [While[k < 10^n, sm = N[sm + Plus @@ (1/Select[ generate@k, PrimeQ]), 128]; k++ ]; Print[{2 n + 1, sm}], {n, 9}] (* _Robert G. Wilson v_, Nov 01 2010 *)

%Y Cf. A002385, A160910, A181442, A050251, A118031, A194097.

%K cons,base,nonn,hard,more

%O 1,2

%A _Martin Renner_, May 11 2006

%E Corrected by _Eric W. Weisstein_, May 14 2006

%E More terms from _Robert G. Wilson v_, Nov 01 2010

%E Entry revised by _N. J. A. Sloane_, May 05 2013

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 11 05:41 EST 2017. Contains 295868 sequences.