login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A117972 Numerator of zeta'(-2n), n >= 0. 9
1, -1, 3, -45, 315, -14175, 467775, -42567525, 638512875, -97692469875, 9280784638125, -2143861251406875, 147926426347074375, -48076088562799171875, 9086380738369043484375, -3952575621190533915703125 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

In A160464 the coefficients of the ES1 matrix are defined. This matrix led to the discovery that the successive differences of the ES1[1-2*m,n] coefficients for m = 1, 2, 3, ..., are equal to the values of zeta'(-2n), see also A094665 and A160468. - Johannes W. Meijer, May 24 2009

A048896(n), n >= 1: Numerators of Maclaurin series for 1 - ((sin x)/x)^2,

  a(n), n >= 2: Denominators of Maclaurin series for 1 - ((sin x)/x)^2, the correlation function in Montgomery's pair correlation conjecture. - Daniel Forgues, Oct 16 2011

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..200

J. Sondow and E. W. Weisstein, MathWorld: Riemann Zeta Function

OEIS Wiki, Montgomery's pair correlation conjecture

FORMULA

a(n) = numerator((2*n)!/2^(2*n + 1)(-1)^n), from the first Mathematica code.

From Terry D. Grant, May 28 2017: (Start)

|a(n)| = A049606(2n+1).

a(n) = -Numerator(A000367(n+1) / A046988(n+1)) for terms > a(1). (End)

EXAMPLE

-1/4, 3/4, -45/8, 315/4, -14175/8, 467775/8, -42567525/16, ...

-zeta(3)/(4*Pi^2), (3*zeta(5))/(4*Pi^4), (-45*zeta(7))/(8*Pi^6), (315*zeta(9))/(4*Pi^8), (-14175*zeta(11))/(8*Pi^10), ...

MAPLE

# Without rational arithmetic

a := n -> (-1)^n*(2*n)!*2^(add(i, i=convert(n, base, 2))-2*n);

# Peter Luschny, May 02 2009

MATHEMATICA

Table[Numerator[(2 n)!/2^(2 n + 1) (-1)^n], {n, 0, 30}]

-(Numerator[(Table[ BernoulliB[2*n]], {n, 1, 22}] / (Table[[Zeta[2*n]/Pi^(2 n)], {n, 1, 22}]]) for terms > a(1) (* Terry D. Grant, May 28 2017 *)

PROG

(Maxima) L:taylor(1/x*sin(sqrt(x))^2, x, 0, 15); makelist(denom(coeff(L, x, n)), n, 0, 15); // Vladimir Kruchinin, May 30 2011

CROSSREFS

Cf. A000367, A049606, A046988, A117973.

From Johannes W. Meijer, May 24 2009: (Start)

Cf. A160464, A094665 and A160468.

Absolute values equal row sums of A160468. (End)

Sequence in context: A062346 A002682 A073595 * A061532 A060242 A271236

Adjacent sequences:  A117969 A117970 A117971 * A117973 A117974 A117975

KEYWORD

sign,frac

AUTHOR

Eric W. Weisstein, Apr 06 2006

EXTENSIONS

First term added, offset changed and edited by Johannes W. Meijer, May 15 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified June 28 04:43 EDT 2017. Contains 288813 sequences.