

A117940


a(0)=1, thereafter a(3n) = a(3n+1)/3 = a(n), a(3n+2)=0.


19



1, 3, 0, 3, 9, 0, 0, 0, 0, 3, 9, 0, 9, 27, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 9, 0, 9, 27, 0, 0, 0, 0, 9, 27, 0, 27, 81, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 9, 0, 9, 27, 0, 0, 0, 0, 9, 27, 0, 27, 81, 0, 0, 0, 0, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

a(n) = a(3n)/a(0) = a(3n+1)/a(1). a(n) mod 2 = A039966(n). Row sums of A117939.
Observation: if this is written as a triangle (see example) then at least the first five row sums coincide with A002001.  Omar E. Pol, Nov 28 2011


LINKS

Table of n, a(n) for n=0..100.
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata
N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS


FORMULA

G.f.: Product{k>=0, 1+3x^(3^k)}; a(n)=sum{k=0..n, sum{j=0..n, L(C(n,j)/3)*L(C(nj,k)/3)}} where L(j/p) is the Legendre symbol of j and p.


EXAMPLE

Contribution from Omar E. Pol, Nov 26 2011 (Start):
When written as a triangle this begins:
1,
3,0,
3,9,0,0,0,0,
3,9,0,9,27,0,0,0,0,0,0,0,0,0,0,0,0,0,
3,9,0,9,27,0,0,0,0,9,27,0,27,81,0,0,0,0,0,0,0,0,0,0,0,...
(End)


CROSSREFS

For generating functions Prod_{k>=0} (1+a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
Sequence in context: A139214 A010030 A197270 * A099093 A137339 A230184
Adjacent sequences: A117937 A117938 A117939 * A117941 A117942 A117943


KEYWORD

easy,nonn,tabf


AUTHOR

Paul Barry, Apr 05 2006


STATUS

approved



