login
A117937
Triangle, rows = inverse binomial transforms of A117938 columns.
4
1, 1, 1, 3, 3, 2, 4, 10, 12, 6, 7, 27, 58, 60, 24, 11, 71, 240, 420, 360, 120, 18, 180, 920, 2460, 3504, 2520, 720, 29, 449, 3360, 13020, 27720, 32760, 20160, 5040, 47, 1107, 11898, 64620, 194184, 337680, 338400, 181440, 40320, 76, 2710, 41268, 307194, 1257120, 3029760, 4415040
OFFSET
1,4
COMMENTS
A117936 is the companion triangle using analogous Fibonacci polynomials. Left border of A117936 = the Lucas numbers; right border = factorials.
[Note that most of the comments here and in many related sequences by the same author refer to some unusual definition of binomial transforms for sequences starting at index 1. - R. J. Mathar, Jul 05 2012]
FORMULA
Rows of the triangle are inverse binomial transforms of A117938 columns. A117938 columns are generated from f(x), Lucas polynomials: (1); (x); (x^2 + 2); (x^3 + 3x); (x^4 + 4x + 2);...
EXAMPLE
First few rows of the triangle are:
1;
1, 1;
3, 3, 2;
4, 10, 12, 6;
7, 27, 58, 60, 24;
11, 71, 240, 420, 360, 120;
...
For example, row 4: (4, 10, 12, 6) = the inverse binomial transform of column 4 of A117938: (4, 14, 36, 76, 140...), being f(x), x =1,2,3...using the Lucas polynomial x^3 + 3x.
MAPLE
A117937 := proc(n, k)
add( A117938(n+i, n)*binomial(k-1, i)*(-1)^(1+i-k), i=0..k-1) ;
end proc:
seq(seq(A117937(n, k), k=1..n), n=1..13) ; # R. J. Mathar, Aug 16 2019
CROSSREFS
Sequence in context: A374940 A151848 A238238 * A110897 A116644 A166462
KEYWORD
nonn,tabl,easy
AUTHOR
Gary W. Adamson, Apr 04 2006
STATUS
approved