login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Expansion of (1 + 2*x + 5*x^2 + 3*x^3 + 2*x^4)/(1-x^3)^2.
2

%I #15 Sep 08 2022 08:45:24

%S 1,2,5,5,6,10,9,10,15,13,14,20,17,18,25,21,22,30,25,26,35,29,30,40,33,

%T 34,45,37,38,50,41,42,55,45,46,60,49,50,65,53,54,70,57,58,75,61,62,80,

%U 65,66,85,69,70,90,73,74,95,77,78,100,81,82,105,85,86,110,89,90,115,93

%N Expansion of (1 + 2*x + 5*x^2 + 3*x^3 + 2*x^4)/(1-x^3)^2.

%C Row sums of A117898.

%H G. C. Greubel, <a href="/A117899/b117899.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,2,0,0,-1).

%F a(n) = 2*a(n-3) - a(n-6).

%F a(n) = Sum_{k=0..n} 2^abs(L(C(n,2)/3) - L(C(k,2)/3)), L(j/p) the Legendre symbol of j and p.

%t CoefficientList[Series[(1+2x+5x^2+3x^3+2x^4)/(1-x^3)^2,{x,0,90}],x] (* or *) LinearRecurrence[{0,0,2,0,0,-1},{1,2,5,5,6,10},90] (* _Harvey P. Dale_, Dec 18 2013 *)

%o (Magma) I:=[1,2,5,5,6,10]; [n le 6 select I[n] else 2*Self(n-3) - Self(n-6): n in [1..91]]; // _G. C. Greubel_, Oct 01 2021

%o (Sage)

%o def A117899_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( (1+2*x+5*x^2+3*x^3+2*x^4)/(1-x^3)^2 ).list()

%o A117899_list(90) # _G. C. Greubel_, Oct 01 2021

%Y Cf. A117898.

%K easy,nonn

%O 0,2

%A _Paul Barry_, Apr 01 2006