login
A117888
Period of sequence {Kronecker(n,k), k = 1, 2, 3, ...}, or 0 if the sequence is not periodic.
2
1, 8, 0, 2, 5, 24, 0, 8, 3, 40, 0, 12, 13, 56, 0, 2, 17, 24, 0, 10, 21, 88, 0, 24, 5, 104, 0, 28, 29, 120, 0, 8, 33, 136, 0, 6, 37, 152, 0, 40, 41, 168, 0, 44, 15, 184, 0, 12, 7, 40, 0, 26, 53, 24, 0, 56, 57, 232, 0, 60, 61, 248, 0, 2, 65, 264, 0, 34, 69, 280, 0, 24, 73, 296, 0, 76
OFFSET
1,2
COMMENTS
From Jianing Song, Nov 24 2018: (Start)
The sequence {Kronecker(n,k)} forms a Dirichlet character modulo n if and only if n == 0, 1 (mod 4).
Let n = 2^t*s, s odd, then a(n) = A117889(n) if and only if t is odd, a(n) = A302138(n) if and only if t is odd or s == 1 (mod 4) (or both). (End)
LINKS
Jean-Paul Allouche, Leo Goldmakher, Mock characters and the Kronecker symbol, arXiv:1608.03957 [math.NT], 2016.
Eric Weisstein's World of Mathematics, Kronecker Symbol
FORMULA
Let n = 2^t*s, s odd, then a(n) = 4*A007947(n) if t is odd; A007947(n) if t is even and s == 1 (mod 4); 2*A007947(n) if t is even and t > 0 and s == 3 (mod 4); 0 if t = 0 and s == 3 (mod 4). - Jianing Song, Nov 24 2018
MATHEMATICA
per[lst_] := FindTransientRepeat[lst, 4] // Last // Length;
a[n_] := per[Table[KroneckerSymbol[n, k], {k, 1, 1200}]];
Array[a, 76] (* Jean-François Alcover, Oct 08 2018 *)
CROSSREFS
Cf. A007947.
Cf. A117889 (period of Kronecker(-n,k)), A302138 (period of Kronecker(k,n)).
Sequence in context: A342200 A265294 A062522 * A331542 A295330 A094240
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Mar 30 2006
EXTENSIONS
Definition corrected by N. J. A. Sloane, May 31 2009
STATUS
approved