

A117851


Numbers n such that n^3 is of the form semiprime(k) + kth composite number.


0



2, 3, 4, 6, 7, 10, 29, 30, 33, 35, 36, 41, 42, 46, 53, 61, 72, 74, 77, 82, 88, 99, 106, 121, 123, 127, 133, 146, 150, 159, 164, 170, 175, 180, 194, 214, 221, 231, 233, 248, 257, 262, 267, 271, 274, 278, 287, 289, 290, 303, 304, 308, 311, 316, 318, 324
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Corresponding k's: 1, 6, 15, 50, 78, 219, 4803, 5303, 6973, 8261, 8968, 13058, 13972, 18210, 27426, 41167, ...,.


LINKS

Table of n, a(n) for n=1..56.


FORMULA

Cuberoot(A112662(n)).


MATHEMATICA

Composite[n_Integer] := FixedPoint[n + PrimePi@# + 1 &, n + PrimePi@n + 1]; SemiPrimePi[n_] := Sum[PrimePi[n/Prime@i]  i + 1, {i, PrimePi@Sqrt@n}]; SemiPrime[n_] := Block[{e = Floor[Log[2, n] + 1], a, b}, a = 2^e; Do[b = 2^p; While[SemiPrimePi[a] < n, a = a + b]; a = a  b/2, {p, e, 0, 1}]; a + b/2]; lst = {}; Do[c = Composite@n + SemiPrime@n; If[IntegerQ[c^(1/3)], Print[c]], {n, 10^7}]; lst (* Robert G. Wilson v *)


CROSSREFS

Sequence in context: A226137 A163771 A194855 * A050679 A158806 A184966
Adjacent sequences: A117848 A117849 A117850 * A117852 A117853 A117854


KEYWORD

nonn


AUTHOR

Robert G. Wilson v, May 01 2006


STATUS

approved



