login
A117847
Numbers k such that A060256(k)*prime(k)# - 1 is a Sophie Germain prime, where prime(k)# is the k-th primorial.
0
1, 2, 3, 4, 8, 9, 10, 15, 24, 35, 37, 79, 340
OFFSET
1,2
COMMENTS
This sequence gives the firsts of twin primes (A060256(n)*prime(n)# - 1, A060256(n)*prime(n)# + 1) which are also Sophie Germain primes.
a(14) > 367. - Amiram Eldar, Sep 11 2021
EXAMPLE
16*(29#)-1 is the first of twin primes, 16 = A060256(10), 2*(16*(29#)-1)+1 is prime so 16*(29#)-1 is a Sophie Germain prime.
MATHEMATICA
q[n_] := Module[{p = Product[Prime[i], {i, 1, n}], k=1}, While[!PrimeQ[k*p-1] || !PrimeQ[k*p+1], k++]; PrimeQ[2*k*p - 1]]; Select[Range[100], q] (* Amiram Eldar, Sep 11 2021 *)
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Pierre CAMI, May 01 2006
EXTENSIONS
a(1)-a(6) inserted by Amiram Eldar, Sep 11 2021
STATUS
approved