%I
%S 2,5,17,9255121991,28870447577
%N Primes of the form floor(Pi^k + e^k).
%C The next term has 1535 digits [From Harvey P. Dale, Apr 26 2011]
%F a(n) = {floor(pi^k + e^k) = p is prime, k an integer}. a(n) = A000040 INTERSECTION A061675.
%t Select[Table[Floor[\[Pi]^n+E^n],{n,0,5000}],PrimeQ] (* _Harvey P. Dale_, Apr 26 2011 *)
%Y See also A059792 Numbers n such that floor(pi^n) is prime = {1, 3, 4, 12, 73, 317, 2728, 6826, 7683, 7950, 14417, ...} and their corresponding primes A077547 = {3, 31, 97, 924269, ...}. See also A059303 Floor(e^n)+1 is prime = {1, 5, 7, 10, 105, ...} and their corresponding primes.
%Y Cf. A000040, A059303, A059792, A061675, A077547, A074496.
%K nonn
%O 1,1
%A _Jonathan Vos Post_, Apr 30 2006
