login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A117731 Numerator of the fraction n*Sum_{k=1..n} 1/(n+k). 9
1, 7, 37, 533, 1627, 18107, 237371, 95549, 1632341, 155685007, 156188887, 3602044091, 18051406831, 54260455193, 225175759291, 13981692518567, 14000078506967, 98115155543129, 3634060848592973, 3637485804655193 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

a(n) almost always equals A082687(n), but differs for n in A125740.

p divides a((p-1)/3) for primes p in A002476, that is, primes of form 6*n + 1. - Alexander Adamchuk, Jul 16 2006

LINKS

Table of n, a(n) for n=1..20.

Eric Weisstein's World of Mathematics, Harmonic Number.

Eric Weisstein's World of Mathematics, Hilbert Matrix.

FORMULA

a(n) = numerator(n*Sum_{k=1..n} 1/(n+k)).

a(n) = numerator(n*(Psi(2*n+1) - Psi(n+1))).

a(n) = numerator(n*Sum_{k=1..2*n} (-1)^(k+1)/k).

a(n) = numerator(n*A058313(2*n)/A058312(2*n)).

a(n) = numerator(Sum_{j=1..n} Sum_{i=1..n} 1/(i+j-1)), which is the numerator of the sum of all matrix elements of n X n Hilbert Matrix M(i,j) = 1/(i+j-1), (i,j = 1..n). The denominator is A117664(n). - Alexander Adamchuk, Apr 23 2006

EXAMPLE

The first few fractions are 1/2, 7/6, 37/20, 533/210, 1627/504, 18107/4620, 237371/51480, ... = A117731/A296519.

For n=2, the n X n Hilbert matrix is

  1 1/2

  1/2 1/3

Thus, a(2) = numerator(1 + 1/2 + 1/2 + 1/3) = numerator(7/3) = 7.

The n X n Hilbert matrix begins as follows:

    1 1/2 1/3 1/4  1/5  1/6  1/7  1/8 ...

  1/2 1/3 1/4 1/5  1/6  1/7  1/8  1/9 ...

  1/3 1/4 1/5 1/6  1/7  1/8  1/9 1/10 ...

  1/4 1/5 1/6 1/7  1/8  1/9 1/10 1/11 ...

  1/5 1/6 1/7 1/8  1/9 1/10 1/11 1/12 ...

  1/6 1/7 1/8 1/9 1/10 1/11 1/12 1/13 ...

  ...

MATHEMATICA

Numerator[Table[n Sum[1/(n + k), {k, n}], {n, 1, 100}]]

Numerator[Table[Sum[Sum[1/(i + j - 1), {i, n}], {j, n}], {n, 30}]] (* Alexander Adamchuk, Apr 23 2006 *)

Table[n (HarmonicNumber[2 n] - HarmonicNumber[n]), {n, 20}] // Numerator (* Eric W. Weisstein, Dec 14 2017 *)

PROG

(PARI) a(n) = numerator(n*sum(k=1, n, 1/(n+k))); \\ Michel Marcus, Dec 14 2017

CROSSREFS

Cf. A296519 (denominators).

Cf. A001008, A002476, A005249, A058313, A058312, A082687, A086881, A098118, A117664, A125740.

Sequence in context: A097493 A341377 A082687 * A155010 A292807 A210620

Adjacent sequences:  A117728 A117729 A117730 * A117732 A117733 A117734

KEYWORD

frac,nonn

AUTHOR

Alexander Adamchuk, Apr 14 2006

EXTENSIONS

Various sections edited by Petros Hadjicostas and Michel Marcus, May 07 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 15:26 EST 2021. Contains 341632 sequences. (Running on oeis4.)