This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117671 a(n) = binomial(3*n+1, n+1). 8
 1, 6, 35, 210, 1287, 8008, 50388, 319770, 2042975, 13123110, 84672315, 548354040, 3562467300, 23206929840, 151532656696, 991493848554, 6499270398159, 42671977361650, 280576272201225 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n) = A258993(2*n+1, n). - Reinhard Zumkeller, Jun 22 2015 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 Milan Janjic, Two Enumerative Functions FORMULA G.f.: (2*(-1+Hypergeometric2F1[-(1/3),1/3,-(1/2),(27*x)/4]))/(3*x). - Harvey P. Dale, Jul 19 2011 G.f.: A(x) = B'(x)/B(x)-B'(x)-1/x, where B(x) = 4/3*sin(1/3*asin(sqrt((27*x)/4)))^2. - Vladimir Kruchinin, Nov 26 2014 From Peter Bala, Nov 04 2015: (Start) With an extra initial term equal to 1, the o.g.f. equals f(x)/g(x)^2, where f(x) is the o.g.f. for A005809 and g(x) is the o.g.f. for A001764. More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(3*n + k,n). Cf. A045721 (k = 1), A025174 (k = 2), A004319 (k = 3), A236194 (k = 4), A013698 (k = 5), A165817 (k = -1). (End) a(n) = [x^(2*n)] 1/(1 - x)^(n+2). - Ilya Gutkovskiy, Oct 10 2017 a(n+1) = 3*(3*n+2)*(3*n+4)*a(n)/(2*(n+2)*(2*n+1)). - Robert Israel, Oct 10 2017 EXAMPLE if n=0 then C(3*0+1,0+1) = C(1,1) = 1. if n=10 then C(3*10+1,10+1) = C(31,11) = 84672315. MAPLE seq(binomial(3*n+1, n+1), n=0..30); # Robert Israel, Oct 10 2017 MATHEMATICA Table[Binomial[3n+1, n+1], {n, 0, 20}] (* Harvey P. Dale, Jul 19 2011 *) PROG (Haskell) a117671 n = a258993 (2 * n + 1) n  -- Reinhard Zumkeller, Jun 22 2015 (PARI) vector(30, n, n--; binomial(3*n+1, n+1)) \\ Altug Alkan, Nov 04 2015 CROSSREFS Cf. A025174: binomial(3n-1,n-1), A006013. Cf. A258993, A001764, A004319, A005809, A013698, A045721, A165817, A236194. Sequence in context: A262717 A144638 A291246 * A317409 A213452 A000399 Adjacent sequences:  A117668 A117669 A117670 * A117672 A117673 A117674 KEYWORD nonn,easy AUTHOR Zerinvary Lajos, Apr 12 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 10:36 EDT 2019. Contains 323390 sequences. (Running on oeis4.)