

A117619


a(n) = n^2 + 7.


10



7, 8, 11, 16, 23, 32, 43, 56, 71, 88, 107, 128, 151, 176, 203, 232, 263, 296, 331, 368, 407, 448, 491, 536, 583, 632, 683, 736, 791, 848, 907, 968, 1031, 1096, 1163, 1232, 1303, 1376, 1451, 1528, 1607, 1688, 1771, 1856, 1943, 2032, 2123, 2216, 2311, 2408
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


LINKS

Ivan Panchenko, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (3,3,1).


FORMULA

a(n) = a(n1) + 2*n  1 (with a(0) = 7).  Vincenzo Librandi, Nov 13 2010
G.f.: (8x^2 + 13x  7)/(x  1)^3.  Indranil Ghosh, Apr 05 2017


EXAMPLE

If n = 1 then n^2 + 7 = 1^2 + 7 = 8 which is the second term.


MATHEMATICA

Table[n^2 + 7, {n, 0, 60}] (* Stefan Steinerberger, Apr 08 2006 *)


PROG

(Sage) [lucas_number1(3, n, 7) for n in xrange(0, 50)] #  Zerinvary Lajos, May 16 2009
(PARI) a(n) = n^2 + 7 \\ Indranil Ghosh, Apr 05 2017
(Python) def a(n): return n**2 + 7 # Indranil Ghosh, Apr 05 2017


CROSSREFS

Cf. A117951, A117950.
Sequence in context: A090385 A145826 A102963 * A226977 A098731 A294483
Adjacent sequences: A117616 A117617 A117618 * A117620 A117621 A117622


KEYWORD

nonn,less,easy


AUTHOR

Parthasarathy Nambi, Apr 07 2006


EXTENSIONS

More terms from Stefan Steinerberger, Apr 08 2006


STATUS

approved



