login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A117619 a(n) = n^2 + 7. 10
7, 8, 11, 16, 23, 32, 43, 56, 71, 88, 107, 128, 151, 176, 203, 232, 263, 296, 331, 368, 407, 448, 491, 536, 583, 632, 683, 736, 791, 848, 907, 968, 1031, 1096, 1163, 1232, 1303, 1376, 1451, 1528, 1607, 1688, 1771, 1856, 1943, 2032, 2123, 2216, 2311, 2408 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Ivan Panchenko, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = a(n-1) + 2*n - 1 (with a(0) = 7). - Vincenzo Librandi, Nov 13 2010

G.f.: (-8x^2 + 13x - 7)/(x - 1)^3. - Indranil Ghosh, Apr 05 2017

EXAMPLE

If n = 1 then n^2 + 7 = 1^2 + 7 = 8 which is the second term.

MATHEMATICA

Table[n^2 + 7, {n, 0, 60}] (* Stefan Steinerberger, Apr 08 2006 *)

PROG

(Sage) [lucas_number1(3, n, -7) for n in xrange(0, 50)] # - Zerinvary Lajos, May 16 2009

(PARI) a(n) = n^2 + 7 \\ Indranil Ghosh, Apr 05 2017

(Python) def a(n): return n**2 + 7 # Indranil Ghosh, Apr 05 2017

CROSSREFS

Cf. A117951, A117950.

Sequence in context: A090385 A145826 A102963 * A226977 A098731 A294483

Adjacent sequences:  A117616 A117617 A117618 * A117620 A117621 A117622

KEYWORD

nonn,less,easy

AUTHOR

Parthasarathy Nambi, Apr 07 2006

EXTENSIONS

More terms from Stefan Steinerberger, Apr 08 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 19 06:50 EST 2017. Contains 294915 sequences.