login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A117591 2^n + Fibonacci(n). 7
1, 3, 5, 10, 19, 37, 72, 141, 277, 546, 1079, 2137, 4240, 8425, 16761, 33378, 66523, 132669, 264728, 528469, 1055341, 2108098, 4212015, 8417265, 16823584, 33629457, 67230257, 134414146, 268753267, 537385141, 1074573864, 2148829917 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(3n) is even if n>0. - Robert G. Wilson v, Sep 06 2002

3 divides a(8n+1) and a(8n-1). - Enrique Pérez Herrero, Dec 29 2010

a(n) = A000079(n+1) - A099036(n) = A099036(n) + 2 * A000045(n). - Reinhard Zumkeller, Aug 15 2013

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

FORMULA

G.f. (1-3x^2)/((1-x-x^2)*(1-2x)).

MATHEMATICA

Table[f=Fibonacci[n]; 2^n+f, {n, 1, 40, 1}] (* Vladimir Joseph Stephan Orlovsky, Jul 23 2008 *)

CoefficientList[Series[(1 - 3 x^2)/((1 - x - x^2) (1 - 2 x)), {x, 0, 35}], x] (* Vincenzo Librandi, Nov 02 2014 *)

PROG

(Haskell)

a117591 n = a117591_list !! n

a117591_list = zipWith (+) a000079_list a000045_list

-- Reinhard Zumkeller, Aug 15 2013

(MAGMA) [2^n+Fibonacci(n): n in [0..40]]; // Vincenzo Librandi, Nov 02 2014

CROSSREFS

Cf. A000045, A000079, A074824.

Cf. A001611, A212262.

Sequence in context: A133999 A238431 A014610 * A003055 A217925 A018101

Adjacent sequences:  A117588 A117589 A117590 * A117592 A117593 A117594

KEYWORD

nonn,easy

AUTHOR

Franklin T. Adams-Watters, Apr 04 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 19 20:30 EST 2014. Contains 252239 sequences.