OFFSET
1,1
COMMENTS
All terms are even since 2^k + prime(k)^2 == 0 (mod 3) for any odd number k. - Robert G. Wilson v, Apr 03 2006
If k is odd, prime(k) == +- 1 (mod 3) making prime(k)^2 == 1 (mod 3) and 2^k == - 1 (mod 3). - Robert G. Wilson v, Apr 03 2006
No more terms below 150000. - Michael S. Branicky, Jul 13 2024
EXAMPLE
20 is in the sequence because the 20th prime is 71 and 2^20 + 71^2 = 1053617 is prime.
MAPLE
a:=proc(n) if isprime(2^n+ithprime(n)^2) then n else fi end: seq(a(n), n=1..1300); # Emeric Deutsch, Apr 06 2006
MATHEMATICA
Do[ If[ PrimeQ[2^n + Prime[n]^2], Print[n]], {n, 20000}] (* Robert G. Wilson v, Apr 03 2006 *)
PROG
(PARI) for(i=1, 3000, if(isprime(2^i+prime(i)^2), print1(i, ", ")))
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Mohammed Bouayoun (mohammed.bouayoun(AT)sanef.com), Apr 03 2006
EXTENSIONS
a(15)-a(19) from Robert G. Wilson v and Giovanni Resta, Apr 03 2006
a(20) from Michael S. Branicky, Feb 10 2023
a(21) from Michael S. Branicky, Jul 12 2024
STATUS
approved