login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A117563 a(n) = A118534(n)/A117078(n) unless A117078(n) = 0 in which case a(n) = 0. 79

%I

%S 0,0,1,0,3,1,5,3,1,9,1,3,13,3,1,1,19,5,9,23,1,15,11,9,3,33,11,35,21,3,

%T 3,5,45,3,49,5,1,3,23,1,59,9,63,27,65,11,1,3,75,45,1,79,21,35,1,1,89,

%U 5,39,93,21,9,3,103,3,3,25,3,115,69,1,39,19,1,75,29,3,3,3,21,139,3,143,61,87

%N a(n) = A118534(n)/A117078(n) unless A117078(n) = 0 in which case a(n) = 0.

%C a(n) is the "level" of prime(n).

%C There is a unique decomposition of the primes: provided the level a(n) is > 0, we have prime(n) = weight * level + gap, or A000040(n)=A117078(n)*a(n)+A001223(n).

%C a(n) = 0 only for primes 2, 3 and 7.

%C A118534(n) = prime(n) - g(n) or A000040(n) - A001223(n) if prime(n) - g(n) > g(n), 0 otherwise.

%H Remi Eismann, <a href="/A117563/b117563.txt">Table of n, a(n) for n = 1..10000</a>

%H Remi Eismann, <a href="http://reismann.free.fr/download/newAlgo.zip">Java program</a> to decompose a prime as weight*level + gap, or A117078(n)*A117563(n) + A001223(n)).

%H Rémi Eismann, <a href="http://arXiv.org/abs/0711.0865">Decomposition into weight * level + jump and application to a new classification of primes</a>, arXiv:0711.0865 [math.NT]

%e a(7)=15/3=5; a(14)=39/13=3; a(16)=47/47=1; a(18)=55/11=5; a(29)=105/5=11.

%Y Cf. A117078, A118534.

%K nonn

%O 1,5

%A _Rémi Eismann_, Apr 29 2006, Feb 14 2008

%E More terms from _Robert G. Wilson v_, May 05 2006

%E Edited by _N. J. A. Sloane_, May 14 2006

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 6 12:54 EST 2016. Contains 278781 sequences.