login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A117563 a(n) = A118534(n)/A117078(n) unless A117078(n) = 0 in which case a(n) = 0. 79

%I

%S 0,0,1,0,3,1,5,3,1,9,1,3,13,3,1,1,19,5,9,23,1,15,11,9,3,33,11,35,21,3,

%T 3,5,45,3,49,5,1,3,23,1,59,9,63,27,65,11,1,3,75,45,1,79,21,35,1,1,89,

%U 5,39,93,21,9,3,103,3,3,25,3,115,69,1,39,19,1,75,29,3,3,3,21,139,3,143,61,87

%N a(n) = A118534(n)/A117078(n) unless A117078(n) = 0 in which case a(n) = 0.

%C a(n) is the "level" of prime(n).

%C There is a unique decomposition of the primes: provided the level a(n) is > 0, we have prime(n) = weight * level + gap, or A000040(n)=A117078(n)*a(n)+A001223(n).

%C a(n) = 0 only for primes 2, 3 and 7.

%C A118534(n) = prime(n) - g(n) or A000040(n) - A001223(n) if prime(n) - g(n) > g(n), 0 otherwise.

%H Remi Eismann, <a href="/A117563/b117563.txt">Table of n, a(n) for n = 1..10000</a>

%H Remi Eismann, <a href="http://reismann.free.fr/download/newAlgo.zip">Java program</a> to decompose a prime as weight*level + gap, or A117078(n)*A117563(n) + A001223(n)).

%H Rémi Eismann, <a href="http://arXiv.org/abs/0711.0865">Decomposition into weight * level + jump and application to a new classification of primes</a>, arXiv:0711.0865 [math.NT]

%e a(7)=15/3=5; a(14)=39/13=3; a(16)=47/47=1; a(18)=55/11=5; a(29)=105/5=11

%Y Cf. A117078, A118534.

%K nonn

%O 1,5

%A _Rémi Eismann_, Apr 29 2006, Feb 14 2008

%E More terms from _Robert G. Wilson v_, May 05, 2006

%E Edited by _N. J. A. Sloane_, May 14 2006

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 19 16:42 EST 2014. Contains 252236 sequences.