The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117502 Triangle, row sums = A001595. 2
 1, 1, 2, 1, 1, 3, 1, 1, 2, 5, 1, 1, 2, 3, 8, 1, 1, 2, 3, 5, 13, 1, 1, 2, 3, 5, 8, 21, 1, 1, 2, 3, 5, 8, 13, 34, 1, 1, 2, 3, 5, 8, 13, 21, 55, 1, 1, 2, 3, 5, 8, 13, 21, 34, 89, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 144, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 233 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Row sums = A001595 = (1, 3, 9, 15, 25, 41, ...). LINKS G. C. Greubel, Rows n = 1..100 of triangle, flattened FORMULA n-th row = first n Fibonacci terms, with a deletion of F(n). Columns of the triangle are difference terms of the array in A117501. T(n,k) = Fibonacci(k) for k < n and T(n,n) = Fibonacci(n+1). - G. C. Greubel, Jul 10 2019 EXAMPLE Row 5 of the triangle = (1, 1, 2, 3, 8); the first 5 Fibonacci terms with a deletion of F(5) = 5. First few rows of the triangle are:   1;   1, 2;   1, 1, 3;   1, 1, 2, 5;   1, 1, 2, 3, 8; ... MATHEMATICA Table[If[k==n, Fibonacci[n+1], Fibonacci[k]], {n, 20}, {k, n}]//Flatten (* G. C. Greubel, Jul 10 2019 *) PROG (PARI) T(n, k) = if(k==n, fibonacci(n+1), fibonacci(k)); \\ G. C. Greubel, Jul 10 2019 (MAGMA) [k eq n select Fibonacci(n+1) else Fibonacci(k): k in [1..n], n in [1..20]]; // G. C. Greubel, Jul 10 2019 (Sage) def T(n, k):     if (k==n): return fibonacci(n+1)     else: return fibonacci(k) [[T(n, k) for k in (1..n)] for n in (1..20)] # G. C. Greubel, Jul 10 2019 (GAP) T:= function(n, k)     if k=n then return Fibonacci(n+1);     else return Fibonacci(k);     fi;   end; Flat(List([1..20], n-> List([1..n], k-> T(n, k) ))); # G. C. Greubel, Jul 14 2019 CROSSREFS Cf. A000045, A117501, A001595. Sequence in context: A306680 A083312 A032435 * A212630 A030360 A232529 Adjacent sequences:  A117499 A117500 A117501 * A117503 A117504 A117505 KEYWORD nonn,tabl AUTHOR Gary W. Adamson, Mar 23 2006 EXTENSIONS More terms added by G. C. Greubel, Jul 10 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 26 09:37 EDT 2020. Contains 334620 sequences. (Running on oeis4.)