login
A117465
Denominator of -16/((n+2)*n*(n-2)*(n-4)).
1
9, 0, 15, 0, 105, 24, 945, 120, 3465, 360, 9009, 840, 19305, 1680, 36465, 3024, 62985, 5040, 101745, 7920, 156009, 11880, 229425, 17160, 326025, 24024, 450225, 32760, 606825, 43680, 801009, 57120, 1038345, 73440, 1324785, 93024, 1666665, 116280
OFFSET
1,1
COMMENTS
I came up with the equation to help analyze the path to stable orbits of the logistic function
f(n+1) = k*n(1-n) for f(n) with n => 9, then f(n)*A072346(n-5) = A072346(n+3).
a(n) is the denominator of f(n). The numerator of f(n) is -1 if n is even, else -16.
FORMULA
a(n) = denominator of the reduced -16/(n*(n-2)*(n+2)*(n-4)).
a(2n) = A052762(n+1).
a(n) = 5*a(n-2) -10*a(n-4) +10*a(n-6) -5*a(n-8) +a(n-10) for n>15. - R. J. Mathar, Mar 27 2010
a(n) = -(-17+15*(-1)^n)*(n*(16-4*n-4*n^2+n^3))/32 for n>3. - Colin Barker, Nov 11 2014
G.f.: 3*x*(10*x^12-50*x^10+105*x^8-160*x^6-8*x^5-40*x^4+10*x^2-3) / ((x-1)^5*(x+1)^5). - Colin Barker, Nov 11 2014
EXAMPLE
f(5) = -16/(7*5*3*1) = -16/105, denominator a(5) = 105.
f(6) = -16/(8*6*4*2) = -1/24, denominator a(6) = 24.
MAPLE
f(n) := n -> (1/((n/4)+(n^2/4)-(n^3/16)-1))/n;
MATHEMATICA
Join[{9, 0, 15, 0}, Denominator[Table[-(16/(n (n^3-4 n^2-4 n+16))), {n, 5, 40}]]] (* Harvey P. Dale, Nov 06 2011 *)
PROG
(PARI) Vec(3*x*(10*x^12-50*x^10+105*x^8-160*x^6-8*x^5-40*x^4+10*x^2-3)/((x-1)^5*(x+1)^5) + O(x^100)) \\ Colin Barker, Nov 11 2014
CROSSREFS
Sequence in context: A308102 A338016 A062047 * A136679 A299154 A070929
KEYWORD
frac,nonn,easy
AUTHOR
Steven J. Forsberg, Apr 25 2006
EXTENSIONS
Clearer definition from R. J. Mathar, Mar 27 2010
STATUS
approved