login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A117433 Number of planar partitions of n with all part sizes distinct. 10

%I

%S 1,1,1,3,3,5,9,11,15,21,35,41,59,75,103,149,187,243,321,413,527,735,

%T 895,1165,1467,1885,2335,2997,3853,4765,5977,7473,9269,11531,14255,

%U 17537,22201,26897,33233,40613,50027,60637,74459,89963,109751,134407,162117,195859

%N Number of planar partitions of n with all part sizes distinct.

%C Matches A072706 for n < 10, since a unimodal composition into distinct parts can be placed uniquely as a hook. Starting with n = 10, additional partitions are possible (starting with [4,3|2,1] and [4,2|3,1]).

%H Franklin T. Adams-Watters and Alois P. Heinz, <a href="/A117433/b117433.txt">Table of n, a(n) for n = 0..1000</a> (first 100 terms from Franklin T. Adams-Watters)

%H OEIS Wiki, <a href="https://oeis.org/wiki/Plane_partitions">Plane partitions</a>

%F a(n) = Sum_{k=1..floor((sqrt(8*n+1)-1)/2)} A000085(k)*A008289(n,k).

%e From _Gus Wiseman_, Nov 15 2018: (Start)

%e The a(10) = 35 strict plane partitions (A = 10):

%e A 64 73 82 532 91 541 631 721 4321

%e .

%e 9 54 63 72 432 8 53 71 431 7 43 52 61 421 6 42 51

%e 1 1 1 1 1 2 2 2 2 3 21 3 3 3 4 31 4

%e .

%e 7 6 5 43 42 5 41

%e 2 3 4 2 3 3 3

%e 1 1 1 1 1 2 2

%e .

%e 4

%e 3

%e 2

%e 1

%e (End)

%p b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)

%p -> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0)))

%p end:

%p g:= proc(n) g(n):= `if`(n<2, 1, (n-1)*g(n-2) +g(n-1)) end:

%p a:= proc(n) b(n, n); add(%[i]*g(i-1), i=1..nops(%)) end:

%p seq(a(n), n=0..60); # _Alois P. Heinz_, Nov 18 2012

%t prs2mat[prs_]:=Table[Count[prs,{i,j}],{i,Union[First/@prs]},{j,Union[Last/@prs]}];

%t multsubs[set_,k_]:=If[k==0,{{}},Join@@Table[Prepend[#,set[[i]]]&/@multsubs[Drop[set,i-1],k-1],{i,Length[set]}]];

%t Table[Length[Select[multsubs[Tuples[Range[n],2],n],And[Union[First/@#]==Range[Max@@First/@#],Union[Last/@#]==Range[Max@@Last/@#],UnsameQ@@DeleteCases[Join@@prs2mat[#],0],And@@(OrderedQ[#,Greater]&/@prs2mat[#]),And@@(OrderedQ[#,Greater]&/@Transpose[prs2mat[#]])]&]],{n,5}] (* _Gus Wiseman_, Nov 15 2018 *)

%Y Cf. A000219, A072706, A117434, A000009.

%Y Cf. A001970, A007716, A068313, A114736, A120733, A319646, A321645, A321652, A321653, A321655, A321659, A321660.

%K nonn

%O 0,4

%A _Franklin T. Adams-Watters_, Mar 16 2006, Apr 01 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 04:53 EST 2018. Contains 318090 sequences. (Running on oeis4.)