login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A117433 Number of planar partitions of n with all part sizes distinct. 2

%I

%S 1,1,1,3,3,5,9,11,15,21,35,41,59,75,103,149,187,243,321,413,527,735,

%T 895,1165,1467,1885,2335,2997,3853,4765,5977,7473,9269,11531,14255,

%U 17537,22201,26897,33233,40613,50027,60637,74459,89963,109751,134407,162117

%N Number of planar partitions of n with all part sizes distinct.

%C Matches A072706 for n < 10, since a unimodal composition into distinct parts can be placed uniquely as a hook. Starting with n = 10, additional partitions are possible (starting with [4,3|2,1] and [4,2|3,1]).

%H Franklin T. Adams-Watters and Alois P. Heinz, <a href="/A117433/b117433.txt">Table of n, a(n) for n = 0..1000</a> (first 100 terms from Franklin T. Adams-Watters)

%F a(n) = sum_{k=1}^{floor((sqrt(8*n+1)-1)/2)} A000085(k)*A008289(n,k).

%p b:= proc(n, i) b(n, i):= `if`(n=0, [1], `if`(i<1, [], zip((x, y)

%p -> x+y, b(n, i-1), `if`(i>n, [], [0, b(n-i, i-1)[]]), 0)))

%p end:

%p g:= proc(n) g(n):= `if`(n<2, 1, (n-1)*g(n-2) +g(n-1)) end:

%p a:= proc(n) b(n, n); add(%[i]*g(i-1), i=1..nops(%)) end:

%p seq (a(n), n=0..60); # _Alois P. Heinz_, Nov 18 2012

%Y Cf. A000219, A072706, A117434, A000009.

%K nonn

%O 0,4

%A _Franklin T. Adams-Watters_, Mar 16 2006, Apr 01 2008

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 12 01:08 EST 2017. Contains 295936 sequences.