login
A117367
a(n) = smallest prime greater than the smallest prime dividing n.
5
2, 3, 5, 3, 7, 3, 11, 3, 5, 3, 13, 3, 17, 3, 5, 3, 19, 3, 23, 3, 5, 3, 29, 3, 7, 3, 5, 3, 31, 3, 37, 3, 5, 3, 7, 3, 41, 3, 5, 3, 43, 3, 47, 3, 5, 3, 53, 3, 11, 3, 5, 3, 59, 3, 7, 3, 5, 3, 61, 3, 67, 3, 5, 3, 7, 3, 71, 3, 5, 3, 73, 3, 79, 3, 5, 3, 11, 3, 83, 3, 5, 3, 89, 3, 7, 3, 5, 3, 97, 3, 11, 3, 5
OFFSET
1,1
COMMENTS
All even-indexed terms are 3.
LINKS
EXAMPLE
5 is the smallest prime dividing 35. So a(35) is the smallest prime > 5, which is 7.
MAPLE
with(numtheory): a:=proc(n): if n=1 then 2 else nextprime(factorset(n)[1]) fi: end: seq(a(n), n=1..100); # _Emeric Deutsch_, Apr 22 2006
MATHEMATICA
Table[NextPrime[FactorInteger[n][[1, 1]]], {n, 93}] (* _Michael De Vlieger_, Sep 16 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
_Leroy Quet_, Mar 10 2006
EXTENSIONS
More terms from _Emeric Deutsch_, Apr 22 2006
STATUS
approved