login
A117338
Row sums of triangle A117335.
4
1, 2, 1, 4, -9, 62, -399, 3048, -26045, 247298, -2582027, 29416876, -363327081, 4837734374, -69105690039, 1054490587824, -17122237729589, 294828907099274, -5366869867749347, 102988994579465716, -2078107926978317889, 43988545301378533742
OFFSET
0,2
FORMULA
G.f.: A(x) = 1/(1-x)/[Sum_{n>=0} (-1)^n*n!*x^n].
EXAMPLE
A(x) = 1 + 2*x + x^2 + 4*x^3 - 9*x^4 + 62*x^5 - 399*x^6 +-...
= 1/(1-x)/(1 - x + 2*x^2 - 6*x^3 + 24*x^4 - 120*x^5 +-...)
PROG
(PARI) a(n)=polcoeff(1/((1-x)*sum(k=0, n, (-1)^k*k!*x^k)+x*O(x^n)), n)
CROSSREFS
Cf. A117335 (triangle), A117336 (column 1), A117337 (column 2).
Sequence in context: A097949 A268572 A343909 * A279927 A137634 A100229
KEYWORD
sign
AUTHOR
Paul D. Hanna, Mar 09 2006
STATUS
approved