The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117274 Triangle read by rows: T(n,k) is the number of partitions of n with no even part repeated and having k 1's (n>=0, 0<=k<=n). 2
 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 1, 0, 1, 3, 2, 1, 1, 1, 0, 1, 3, 3, 2, 1, 1, 1, 0, 1, 4, 3, 3, 2, 1, 1, 1, 0, 1, 6, 4, 3, 3, 2, 1, 1, 1, 0, 1, 7, 6, 4, 3, 3, 2, 1, 1, 1, 0, 1, 9, 7, 6, 4, 3, 3, 2, 1, 1, 1, 0, 1, 12, 9, 7, 6, 4, 3, 3, 2, 1, 1, 1, 0, 1, 14, 12, 9, 7, 6, 4, 3, 3, 2, 1, 1, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,16 COMMENTS Row sums yield A001935. T(n,0)=A117275(n). T(n,k)=T(n-k,0)=A117275(n-k). Sum(k*T(n,k),k=0..n)=A117276(n). LINKS FORMULA G.f.=G(t,x)=(1+x^2)*product((1+x^(2k))/(1-x^(2k-1)), k=2..infinity)/(1-tx). EXAMPLE T(8,2)=3 because we have [6,1,1],[4,2,1,1] and [3,3,1,1]. MAPLE g:=(1+x^2)*product((1+x^(2*k))/(1-x^(2*k-1)), k=2..50)/(1-t*x): gser:=simplify(series(g, x=0, 23)): P[0]:=1: for n from 1 to 14 do P[n]:=sort(coeff(gser, x^n)) od: for n from 0 to 14 do seq(coeff(P[n], t, j), j=0..n) od; # yields sequence in triangular form CROSSREFS Cf. A001935, A117275, A117276. Sequence in context: A318133 A068029 A158208 * A221650 A140883 A214021 Adjacent sequences:  A117271 A117272 A117273 * A117275 A117276 A117277 KEYWORD nonn,tabl AUTHOR Emeric Deutsch, Mar 06 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 05:55 EDT 2020. Contains 337267 sequences. (Running on oeis4.)