This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117262 Triangle T, read by rows, where matrix inverse T^-1 has -3^n in the secondary diagonal: [T^-1](n+1,n) = -3^n, with all 1's in the main diagonal and zeros elsewhere. 8
 1, 1, 1, 3, 3, 1, 27, 27, 9, 1, 729, 729, 243, 27, 1, 59049, 59049, 19683, 2187, 81, 1, 14348907, 14348907, 4782969, 531441, 19683, 243, 1, 10460353203, 10460353203, 3486784401, 387420489, 14348907, 177147, 729, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS More generally, if a lower triangular matrix T to the power p is given by: [T^p](n,k) = C(r,n-k)*p^(n-k)*q^(n*(n-1)/2-k*(k-1)/2) then, for all m, [T^m](n,k) = [prod_{j=0..n-k-1}(m*r-p*j)]/(n-k)!*q^(n*(n-1)/2-k*(k-1)/2) for n>k>=0, with T(n,n) = 1. This triangle results when m=1, p=-1, q=3, r=1. LINKS FORMULA T(n,k) = 3^(n*(n-1)/2 - k*(k-1)/2). EXAMPLE Triangle T begins: 1; 1,1; 3,3,1; 27,27,9,1; 729,729,243,27,1; 59049,59049,19683,2187,81,1; 14348907,14348907,4782969,531441,19683,243,1; 10460353203,10460353203,3486784401,387420489,14348907,177147,729,1; Matrix inverse T^-1 has -3^n in the 2nd diagonal: 1, -1,1, 0,-3,1, 0,0,-9,1, 0,0,0,-27,1, 0,0,0,0,-81,1, 0,0,0,0,0,-243,1, ... PROG (PARI) {T(n, k)=local(m=1, p=-1, q=3, r=1); prod(j=0, n-k-1, m*r-p*j)/(n-k)!*q^((n-k)*(n+k-1)/2)} CROSSREFS Cf. A047656 (column 0), A117263 (row sums); variants: A117250 (p=q=2), A117252 (p=q=3), A117254 (p=q=4), A117256 (p=q=5), A117258 (p=2, q=4), A117260 (p=-1, q=2), A117265 (p=-2, q=2). Sequence in context: A108391 A111840 A174031 * A065431 A053375 A117252 Adjacent sequences:  A117259 A117260 A117261 * A117263 A117264 A117265 KEYWORD nonn,tabl AUTHOR Paul D. Hanna, Mar 14 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .