Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #71 May 20 2023 23:16:51
%S 1,1,2,6,23,110,630,4204,32054,274914,2619692,27459344,313990182,
%T 3889585408,51888955808,741668212080,11307669002720,183174676857608,
%U 3141820432768752,56882461258572976,1084056190235653304,21692744773505849952,454758269790599361968
%N Number of permutations of [n] avoiding the consecutive pattern 1243.
%C a(n) is the number of permutations on [n] that avoid the consecutive pattern 1243. It is the same as the number of permutations which avoid 3421, 4312 or 2134.
%H Alois P. Heinz, <a href="/A117226/b117226.txt">Table of n, a(n) for n = 0..200</a> (terms n = 0..60 from Ray Chandler)
%H A. Baxter, B. Nakamura, and D. Zeilberger, <a href="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/auto.html">Automatic generation of theorems and proofs on enumerating consecutive Wilf-classes</a>, 2011.
%H Sergi Elizalde and Marc Noy, <a href="https://doi.org/10.1016/S0196-8858(02)00527-4 ">Consecutive patterns in permutations</a>, Adv. Appl. Math. 30 (2003), 110-125; see p. 120.
%H Sergi Elizalde, <a href="https://arxiv.org/abs/math/0505254">Asymptotic enumeration of permutations avoiding generalized patterns</a>, arXiv:math/0505254 [math.CO], 2005.
%H Sergi Elizalde, <a href="https://doi.org/10.1016/j.aam.2005.05.006">Asymptotic enumeration of permutations avoiding generalized patterns</a>, Adv. Appl. Math. 36 (2006), 138-155.
%H Steven Finch, <a href="https://web.archive.org/web/20150405060634/http://www.people.fas.harvard.edu/~sfinch/csolve/av.pdf">Pattern-Avoiding Permutations</a>. [Archived copy]
%H Steven Finch, <a href="/A240885/a240885.pdf">Pattern-Avoiding Permutations</a>. [Cached copy, with permission]
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PochhammerSymbol.html">Pochhammer Symbol</a>.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Falling_and_rising_factorials">Falling and rising factorials</a>.
%F a(n) ~ c * d^n * n!, where d = 0.952891423325053197208702817349165942637814..., c = 1.169657787464830219717093446929792145316... . - _Vaclav Kotesovec_, Aug 23 2014
%F From _Petros Hadjicostas_, Nov 01 2019:
%F E.g.f.: 1/W(z), where W(z) := 1 + Sum_{n >= 0} (-1)^(n+1)* z^(3*n+1)/(b(n)*(3*n+1)) with b(n) = A176730(n) = (3*n)!/(3^n*(1/3)_n). (Here (x)_n = x*(x + 1)*...*(x + n - 1) is the Pochhammer symbol, or rising factorial, which is denoted by (x)^n in some papers and books.) The function W(z) satisfies the o.d.e. W'''(z) + z*W'(z) = 0 with W(0) = 1, W'(0) = -1, and W''(0) = 0. [See Theorem 4.3 (Case 1243 with u = 0) in Elizalde and Noy (2003).]
%F a(n) = Sum_{m = 0..floor((n-1)/3)} (-3)^m * (1/3)_m * binomial(n, 3*m+1) * a(n-3*m-1) for n >= 1 with a(0) = 1. (End)
%p b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
%p add(b(u-j, o+j-1, 0), j=`if`(t<0, -t, 1)..u)+
%p add(b(u+j-1, o-j, `if`(t=0, j, -j)), j=1..o))
%p end:
%p a:= n-> b(n, 0$2):
%p seq(a(n), n=0..25); # _Alois P. Heinz_, Nov 07 2013
%t A[x_]:=Integrate[AiryAi[ -t],{t,0,x}]; B[x_]:=Integrate[AiryBi[ -t],{t,0,x}];
%t c=-3^(2/3)*Gamma[2/3]/2; d=-3^(1/6)*Gamma[2/3]/2;
%t a[n_]:=SeriesCoefficient[1/(c*A[x]+d*B[x]+1),{x,0,n}]*n!; Table[a[n],{n,0,10}] (* fixed by _Vaclav Kotesovec_, Aug 23 2014 *)
%t (* constant d: *) 1/x/.FindRoot[3^(2/3)*Gamma[2/3]/2 * Integrate[AiryAi[-t],{t,0,x}] + 3^(1/6)*Gamma[2/3]/2 * Integrate[AiryBi[-t],{t,0,x}]==1,{x,1},WorkingPrecision->50] (* _Vaclav Kotesovec_, Aug 23 2014 *)
%Y Cf. A113228, A113229, A117156, A117158, A176730, A201692, A201693, A231166.
%Y Row m = 1 of A327722.
%K nonn
%O 0,3
%A _Steven Finch_, Apr 26 2006