This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117210 G.f. A(x) satisfies (1+x) = product_{n>=1} A(x^n). 10
 1, 1, -1, -2, 0, 1, 1, 0, -1, -1, 2, 1, -2, -3, 2, 4, 2, -5, -4, 0, 5, 2, 1, -5, -1, 2, 5, -5, -2, -2, 5, -1, 3, -6, 2, 0, 11, -6, -4, -10, 12, -1, 6, -13, 5, -8, 16, -8, 9, -13, 17, -17, 7, -21, 25, -10, 22, -29, 20, -24, 34, -24, 27, -44, 35, -32, 39, -52, 45, -39, 66, -53, 47, -76, 70, -55, 79, -98, 66, -84, 115, -89 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Self-convolution inverse is A117211. LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Paul D. Hanna) N. J. A. Sloane, Transforms FORMULA G.f.: A(x) = exp( Sum_{n>=1} A117212(n)*x^n/n ). G.f.: A(x) = product_{k>=1}(1 + x^k)^mu(k) where mu(k) is the Möbius function, A008683 - Stuart Clary, Apr 15 2006 Weigh transform of A008683(n). - Vladeta Jovovic, Apr 20 2006 MATHEMATICA nmax = 81; CoefficientList[ Series[ Product[ (1 + x^k)^(MoebiusMu[k]), {k, 1, nmax} ], {x, 0, nmax} ], x ] (* Stuart Clary, Apr 15 2006 *) PROG (PARI) {a(n)=if(n==0, 1, if(n==1, 1, -polcoeff(prod(i=1, n, sum(k=0, min(n\i, n-1), a(k)*x^(i*k))+x*O(x^n)), n, x)))} CROSSREFS Cf. A117212 (l.g.f.), A117211 (inverse); variants: A117208, A117209. Sequence in context: A236853 A117163 A096863 * A060277 A290825 A204688 Adjacent sequences:  A117207 A117208 A117209 * A117211 A117212 A117213 KEYWORD sign,look AUTHOR Paul D. Hanna, Mar 03 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 13 18:57 EDT 2019. Contains 327981 sequences. (Running on oeis4.)