login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1)=a(2)=1; a(n) = a(n-1)*a(n-2) + a(n-3) + a(n-4) + ... + a(1) for n>2.
1

%I #8 Jul 31 2015 21:29:54

%S 1,1,1,2,4,11,49,548,26872,14725925,395715057217,5827270253948278214,

%T 2305938581960065033611659323852,

%U 13437327306087560724405450621249967248150551970959

%N a(1)=a(2)=1; a(n) = a(n-1)*a(n-2) + a(n-3) + a(n-4) + ... + a(1) for n>2.

%C Form the product of the previous two terms and then add all other previous terms.

%t f[s_] := Block[{}, Append[s, s[[ -1]]s[[ -2]] + Plus @@ Drop[s, -2]]]; Nest[f, {1, 1}, 12] (* _Robert G. Wilson v_, May 26 2006 *)

%o #include <stdio.h> #include <inttypes.h> int main (void) { int64_t n1=1; int64_t n2=1; int i; int64_t sum=0,next; printf("%lld,%lld,",n1,n2); for (i=0;i<10;i++) { next=n1*n2+sum; sum+=n1; n1=n2; n2=next; printf("%lld,",n2); } }

%o (PARI) {m=14;print1(a=1,",",b=1,",");v=[];for(n=3,m,print1(k=a*b+sum(j=1,#v,v[j]),",");v=concat(v,a);a=b;b=k)} \\ _Klaus Brockhaus_

%Y Cf. A117030.

%K nonn

%O 1,4

%A Gabriel Finch (salsaman(AT)xs4all.nl), Apr 21 2006

%E a(13) and a(14) from _Klaus Brockhaus_, Apr 27 2006