login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations avoiding the consecutive pattern 1342.
18

%I #26 May 11 2019 10:15:41

%S 1,1,2,6,23,110,630,4210,32150,276210,2636720,27687440,317169270,

%T 3936056080,52603684760,753241509900,11504852242400,186705357825800,

%U 3208160592252000,58188413286031600,1110946958902609400

%N Number of permutations avoiding the consecutive pattern 1342.

%C a(n) is the number of permutations on [n] that avoid the consecutive pattern 1342. It is the same as the number of permutations which avoid 2431, 4213, 3124, 1432, 2341, 4123 or 3214.

%D Sergi Elizalde, Asymptotic enumeration of permutations avoiding generalized patterns, Adv. Appl. Math. 36 (2006) 138-155.

%D Sergi Elizalde and Marc Noy, Consecutive patterns in permutations, Adv. Appl. Math. 30 (2003) 110-125.

%H Alois P. Heinz, <a href="/A117156/b117156.txt">Table of n, a(n) for n = 0..200</a> (terms n = 0..60 from Ray Chandler)

%H A. Baxter, B. Nakamura, and D. Zeilberger. <a href="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/auto.html">Automatic generation of theorems and proofs on enumerating consecutive Wilf-classes</a>

%H Steven Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/csolve/av.pdf">Pattern-Avoiding Permutations</a> [Broken link?]

%H Steven Finch, <a href="/A240885/a240885.pdf">Pattern-Avoiding Permutations</a> [Cached copy, with permission]

%F a(n) ~ c * d^n * n!, where d = 1/r = 0.9546118344740519430556804334164431663486451742931588346372174751881329..., where r = 1.04754620033697244977759528695194261... is the root of the equation integral_{x,0,r} exp(-x^3/6) dx = 1, and c = 1.1561985648406071020520797542907648300587978482957199521032311960968187467... . - _Vaclav Kotesovec_, Aug 23 2014

%t a[n_]:=Coefficient[Series[1/(1-Integrate[Exp[ -t^3/6],{t,0,x}]),{x,0,30}],x^n]*n!

%t (* Second program: *)

%t m = 21; gf = 1/(1-Sum[If[Mod[k, 3] == 0, (-1)^Mod[k, 6]/(6^(k/3)*(k/3)!), 0]* (x^(k+1)/(k+1)), {k, 0, m}]);

%t CoefficientList[gf + O[x]^m, x]*Range[0, m-1]! (* _Jean-François Alcover_, May 11 2019 *)

%Y Cf. A113228, A113229, A117158, A117226, A201692, A201693, A231166.

%Y Cf. A052324.

%K nonn

%O 0,3

%A _Steven Finch_, Apr 26 2006