The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117145 Triangle read by rows: T(n,k) is the number of partitions of n into parts of the form 2^j-1, j=1,2,... and having k parts (n>=1, k>=1). Partitions into parts of the form 2^j-1, j=1,2,... are called s-partitions. 2
 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,39 COMMENTS Row sums yield A000929. sum(k*T(n,k),k=1..n)=A117146(n). LINKS P. C. P. Bhatt, An interesting way to partition a number, Inform. Process. Lett., 71, 1999, 141-148. W. M. Y. Goh, P. Hitczenko and A. Shokoufandeh, s-partitions, Inform. Process. Lett., 82, 2002, 327-329. FORMULA G.f.: G(t,x) = -1+1/product(1-tx^(2^k-1), k=1..infinity). EXAMPLE T(9,3)=2 because we have [7,1,1] and [3,3,3]. MAPLE g:=-1+1/product(1-t*x^(2^k-1), k=1..10): gser:=simplify(series(g, x=0, 20)): for n from 1 to 19 do P[n]:=sort(coeff(gser, x^n)) od: for n from 1 to 19 do seq(coeff(P[n], t^j), j=1..n) od; # yields sequence in triangular form CROSSREFS Cf. A000929, A117146. Sequence in context: A160804 A085854 A216188 * A338822 A083912 A256003 Adjacent sequences:  A117142 A117143 A117144 * A117146 A117147 A117148 KEYWORD nonn,tabl AUTHOR Emeric Deutsch, Mar 06 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 19 13:00 EDT 2021. Contains 343114 sequences. (Running on oeis4.)