login
A117117
A sequence related to M-partitions.
1
1, 1, 2, 4, 6, 8, 13, 15, 21, 29, 37, 45, 62, 70, 89, 108, 132, 151, 191, 210, 256, 296, 350, 390, 476, 516, 610, 684, 795, 869, 1025, 1099, 1274, 1399, 1593, 1718, 1994, 2119, 2414, 2614, 2949, 3149, 3585, 3785, 4267, 4577, 5099, 5409, 6102, 6412, 7145, 7603, 8422
OFFSET
0,3
LINKS
O. J. Rodseth, Enumeration of M-partitions, Discrete Math., 306 (2006), 694-698. (See E(x).)
MAPLE
# To get about 80 terms, first define B and D2 as in A117115. E2:=add( x^(2^(j+1)-4)*subs(x=x^(3*2^(j-1)), D2)*mul(1/(1-x^(2^i)), i=0..j), j=1..8); series(E2, x, 81);
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 26 2006
STATUS
approved