%I #8 May 31 2018 11:21:35
%S 1,2,3,6,7,11,14,21,24,34,37,51,58,75,82,110,117,148,161,202,215,265,
%T 278,342,365,436,459,557,580,685,722,855,892,1046,1083,1268,1325,1523,
%U 1580,1839,1896,2168,2251,2573,2656,3017,3100,3525,3644,4092,4211,4766,4885
%N A sequence related to M-partitions.
%H O. J. Rodseth, <a href="https://dx.doi.org/10.1016/j.disc.2006.02.010">Enumeration of M-partitions</a>, Discrete Math., 306 (2006), 694-698. (See D(x).)
%p # To get about 80 terms: B:=mul( (1-x^(2^n))^(-1),n=0..7); D2:=add( x^(2^(j-1)-1)*subs(x=x^(3*2^(j-1)),B)*mul(1/(1-x^(2^i)),i=0..j), j=1..8); series(D2,x,81);
%Y Cf. A000123, A100529, A117117.
%K nonn
%O 0,2
%A _N. J. A. Sloane_, Apr 26 2006