OFFSET
1,3
EXAMPLE
676 is in the sequence because it is a palindrome and the product of its digits 6*7*6=252 is also a palindrome.
MATHEMATICA
id[n_]:=IntegerDigits[n]; palQ[n_]:=Reverse[x=id[n]]==x; t={}; Do[If[palQ[n] && palQ[Times@@id[n]], AppendTo[t, n]], {n, 0, 10110}]; t (* Jayanta Basu, May 15 2013 *)
PROG
(PARI) isok(n) = my(d = digits(n), dp = digits(vecprod(d))); (Vecrev(d) == d) && (Vecrev(dp) == dp); \\ Michel Marcus, Nov 11 2019
(Magma) f:=func<n| Intseq(n) eq Reverse(Intseq(n))>; [k:k in [0..10000]| f(k) and f(&*Intseq(k))]; // Marius A. Burtea, Nov 11 2019
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Luc Stevens (lms022(AT)yahoo.com), Apr 16 2006
STATUS
approved