This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A117000 a(n) = Sum_{d|n} Jacobi(2,d)*d. 10
 1, 1, -2, 1, -4, -2, 8, 1, 7, -4, -10, -2, -12, 8, 8, 1, 18, 7, -18, -4, -16, -10, 24, -2, 21, -12, -20, 8, -28, 8, 32, 1, 20, 18, -32, 7, -36, -18, 24, -4, 42, -16, -42, -10, -28, 24, 48, -2, 57, 21, -36, -12, -52, -20, 40, 8, 36, -28, -58, 8, -60, 32, 56, 1, 48, 20, -66, 18, -48, -32, 72, 7, 74, -36, -42, -18, -80, 24, 80, -4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). Inverse Mobius transform of the sequence n*A091337(n), n>=1. - R. J. Mathar, Jul 08 2011 REFERENCES H. J. S. Smith, Report on the Theory of Numbers, reprinted in Vol. 1 of his Collected Math. Papers, Chelsea, NY, 1979, see p. 323. N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 85, Eq. (32.67). LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA G.f.: Sum_{k>0} x^k*(1+x^(2*k))*(1-4*x^(2*k)+x^(4*k))/(1+x^(4*k))^2. - Vladeta Jovovic, Apr 15 2006 Expansion of (1 - phi(q) * phi(q^2) * phi(-q)^2) / 2 in powers of q where phi() is a Ramanujan theta function. - Michael Somos, Aug 08 2007 a(n) is multiplicative with a(2^e) = 1, a(p^e) = (p^(e+1) - 1) / (p - 1) if p == 1, 7 (mod 8), ((-p)^(e+1) - 1) / (-p - 1) if p == 3, 5 (mod 8). - Michael Somos, Aug 08 2007 Given g.f. A(x), then B(x) = 1 - 2*A(x) satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v^4 + u^2*v^2 + 2*u^2*w^2 + 2*u*v*w * (-u+2*v-2*w) - 2*u*v^3. - Michael Somos, Aug 08 2007 G.f.: Sum_{k>0} k * x^k / (1 - x^k) * Kronecker(2, k). - Michael Somos, Aug 08 2007 Logarithmic derivative of A111374, the reciprocal of the Goellnitz-Gordon continued fraction: 1+x + x^2/(1+x^3 + x^4/(1+x^5 + x^6/(1+x^7 +...))) in powers of x. - Paul D. Hanna, Jan 10 2014 EXAMPLE G.f. = q + q^2 - 2*q^3 + q^4 - 4*q^5 - 2*q^6 + 8*q^7 + q^8  + 7*q^9 - 4*q^10 - 10*q^11 + ... MAPLE with(numtheory); A117000:=proc(n) local d, t1, t2; t1:=0; t2:=0; for d from 1 to n do if n mod d = 0 then t1:=t1+jacobi(2, d)*d; fi; od: t1; end; MATHEMATICA a[n_] := Sum[JacobiSymbol[2, d]*d, {d, Divisors[n]}]; a /@ Range[80] (* Jean-François Alcover, Jan 10 2014 *) a[ n_] := SeriesCoefficient[ (1 - EllipticTheta[ 3, 0, q] EllipticTheta[ 3, 0, q^2] EllipticTheta[ 4, 0, q]^2) / 2, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *) a[ n_] := SeriesCoefficient[ (1 - QPochhammer[ q]^2 QPochhammer[ q^2] QPochhammer[ q^4]^3 / QPochhammer[ q^8]^2) / 2, {q, 0, n}]; (* Michael Somos, Apr 26 2015 *) PROG (PARI) {a(n)= if( n<1, 0, sumdiv(n, d, d * kronecker(2, d)))}; /* Michael Somos, Aug 08 2007 */ (PARI) {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 1, if( abs(p%8-4)==3, (p^(e+1)-1)/(p-1), ((-p)^(e+1)-1)/(-p-1))))))}; /* Michael Somos, Aug 08 2007 */ (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (1 - eta(x + A)^2 * eta(x^2 + A) * eta(x^4 + A)^3 / eta(x^8 + A)^2) / 2, n))}; /* Michael Somos, Aug 08 2007 */ CROSSREFS Apart from signs, same as A113418. Cf. A117001. Sequence in context: A101707 A304587 A113418 * A082392 A233327 A085086 Adjacent sequences:  A116997 A116998 A116999 * A117001 A117002 A117003 KEYWORD sign,mult AUTHOR N. J. A. Sloane, Apr 15 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 19 12:53 EST 2019. Contains 320310 sequences. (Running on oeis4.)