

A116952


a(n) = 3*a(n1) + 5 with a(0) = 1.


4



1, 8, 29, 92, 281, 848, 2549, 7652, 22961, 68888, 206669, 620012, 1860041, 5580128, 16740389, 50221172, 150663521, 451990568, 1355971709, 4067915132, 12203745401, 36611236208, 109833708629, 329501125892, 988503377681, 2965510133048, 8896530399149
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


LINKS

Table of n, a(n) for n=0..26.
Index to sequences with linear recurrences with constant coefficients, signature (4,3).


FORMULA

a(n) = (7/2)3^n(5/2). [Emeric Deutsch]
a(n) = 4*a(n1)3*a(n2). G.f.: (4*x+1) / ((x1)*(3*x1)).  Colin Barker, Jul 18 2013


EXAMPLE

The second term is 8 since a(1) = 3*a(0) + 5 = 3*1 + 5 = 8.


MAPLE

a:=n>(7*3^n5)/2: seq(a(n), n=0..27);
a[0]:=1: for n from 1 to 27 do a[n]:=3*a[n1]+5 od: seq(a[n], n=0..27);


MATHEMATICA

a[0] := 1; a[n_] := 3a[n  1] + 5; Table[a[n], {n, 0, 30}]


CROSSREFS

Sequence in context: A131438 A048478 A001360 * A199207 A088131 A072264
Adjacent sequences: A116949 A116950 A116951 * A116953 A116954 A116955


KEYWORD

nonn,easy


AUTHOR

Parthasarathy Nambi, Mar 29 2006


EXTENSIONS

More terms from Emeric Deutsch and Stefan Steinerberger, Apr 01 2006
More terms from Colin Barker, Jul 18 2013


STATUS

approved



