login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A116940 Greatest m such that A116939(m) = n. 10
0, 3, 6, 11, 16, 23, 30, 39, 48, 59, 70, 83, 96, 111, 126, 143, 160, 179, 198, 219, 240, 263, 286, 311, 336, 363, 390, 419, 448, 479, 510, 543, 576, 611, 646, 683, 720, 759, 798, 839, 880, 923, 966, 1011, 1056, 1103, 1150, 1199, 1248, 1299, 1350, 1403, 1456 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = A000982(n) + A005843(n).

From Andrew Rupinski, Nov 30 2009: (Start)

For n > 0, a(n) appears to be the set such that binomial(2*a(n),r) - binomial(2*a(n),r-2) = binomial(2*a(n),s) - binomial(2*a(n),s-2) for some r != s.

As a consequence of the Weyl Dimension Formula and the above comment, a(n) also appears to be the indices k such that the Symplectic Group Sp(k) has two fundamental irreducible representations of the same dimension. (End)

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).

FORMULA

a(0) = 0, a(n+1) = a(n) + 2*floor(n/2) + 3.

a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Joerg Arndt, Apr 02 2011

G.f.: x*(3 - x^2)/((1 + x)*(1 - x)^3). - Arkadiusz Wesolowski, Jan 01 2012

a(n) = 2n + ceiling(n^2/2). - Wesley Ivan Hurt, Jun 14 2013

a(n) = (2*n*(n + 4) - (-1)^n + 1)/4. - Bruno Berselli, Jun 14 2013

a(n) = A081352(n) - A236283(n + 1). - Miko Labalan, Dec 04 2016

From Klaus Purath, Jan 26 2020: (Start)

a(n) = binomial(n+2, 2) + floor((n-1)/2).

a(n) = floor(A028884(n)/2) - n.

a(n) = (n+1)^2 - A099392(n+1).

a(2*n)^2 - a(2*n-1)*a(2*n+1) = 3, n > 0.

a(2*n+1)^2 - a(2*n)*a(2*n+2) = (2*n+3)^2. (End)

E.g.f.: (1/2)*(x*(5 + x)*cosh(x) + (1 + 5*x + x^2)*sinh(x)). - Stefano Spezia, Jan 26 2020

EXAMPLE

From Andrew Rupinski, Nov 30 2009: (Start)

a(1) = 3 and binomial(6,3)-binomial(6,1) = binomial(6,2)-binomial(6,0).

a(1) = 3 and the fundamental representations of Sp(3) are of dimensions 6, 14 and 14. a(2) = 6 and the fundamental representations of Sp(6) are of dimensions 12, 65, 208, 429, 572, and 429. (End)

MAPLE

seq( (2*(n+2)^2 -(-1)^n -7)/4, n=0..55); # G. C. Greubel, Jan 26 2020

MATHEMATICA

a = {0}; Do[AppendTo[a, If[Count[a, #-1] > #-1, #+1, #-1]] &@ a[[n]], {n, 1500}]; Most@ Values@ Map[Last, PositionIndex@ a] - 1 (* Michael De Vlieger, Dec 07 2016, Version 10 *)

Table[(2*(n+2)^2 -(-1)^n -7)/4, {n, 0, 55}] (* G. C. Greubel, Jan 26 2020 *)

PROG

(Haskell)

import Data.List (elemIndices)

a116940 n = last $ elemIndices n $ takeWhile (<= n + 1) a116939_list

-- Reinhard Zumkeller, Jun 28 2013

(PARI) vector(56, n, (2*(n+1)^2 +(-1)^n -7)/4) \\ G. C. Greubel, Jan 26 2020

(MAGMA) [(2*n*(n+4) -(-1)^n +1)/4: n in [0..55]]; // G. C. Greubel, Jan 26 2020

(Sage) [(2*n*(n+4) -(-1)^n +1)/4 for n in (0..55)] # G. C. Greubel, Jan 26 2020

CROSSREFS

Sequence in context: A333709 A266252 A267260 * A278100 A087099 A075703

Adjacent sequences:  A116937 A116938 A116939 * A116941 A116942 A116943

KEYWORD

nonn,easy

AUTHOR

Reinhard Zumkeller, Feb 27 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 00:08 EDT 2020. Contains 334613 sequences. (Running on oeis4.)