login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A116904 Number of n-step self-avoiding walks on the upper 4 octants grid starting at origin. 0
1, 5, 21, 93, 409, 1853, 8333, 37965, 172265, 787557, 3593465, 16477845, 75481105, 346960613, 1593924045, 7341070889 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Guttmann-Torrie simple cubic lattice series coefficients c_n^{2}(Pi). - N. J. A. Sloane, Jul 06 2015

REFERENCES

A. J. Guttmann and G. M. Torrie, Critical behavior at an edge for the SAW and Ising model, J. Phys. A 17 (1984), 3539-3552.

LINKS

Table of n, a(n) for n=0..15.

M. N. Barber et al., Some tests of scaling theory for a self-avoiding walk attached to a surface [From Vladeta Jovovic, Nov 26 2008]

T. Dachraoui et al., Elementary paths in a cubic lattice and application to molecular biology [From Vladeta Jovovic, Nov 26 2008]

EXAMPLE

See A116903 for a graphical example of the bidimensional counterpart.

CROSSREFS

Cf. A001412, A039648, A116903.

Sequence in context: A218964 A154964 A007287 * A126952 A273570 A103519

Adjacent sequences:  A116901 A116902 A116903 * A116905 A116906 A116907

KEYWORD

nonn

AUTHOR

Giovanni Resta, Feb 15 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 12:04 EDT 2019. Contains 328345 sequences. (Running on oeis4.)