The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A116886 Primes p that remain prime through at least 2 iterations of the function f(p) = p^2 + 4. 5
 3, 17, 103, 137, 277, 313, 677, 743, 1117, 1627, 2003, 2143, 3407, 3677, 4483, 5087, 5903, 7177, 7333, 8087, 8093, 8147, 8537, 8573, 9293, 9473, 10177, 10477, 11173, 13807, 14897, 15107, 16657, 19753, 21563, 22307, 24113, 26113, 26417, 26633 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Numbers p with the property that p, q = p^2 + 4, and r = q^2 + 4 are all prime. - Zak Seidov, Sep 08 2009 a(n) = sqrt(A165218(n) - 4). - Zak Seidov, Sep 08 2009 LINKS Zak Seidov, Table of n, a(n) for n = 1..1000 EXAMPLE 17 is prime, 17^2 + 4 = 293 is prime and 293^2 + 4 = 85853 is prime. MATHEMATICA Select[Prime[Range[2*7! ]], PrimeQ[ #^2+4]&&PrimeQ[(#^2+4)^2+4]&] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2010 *) fQ[n_]:=AllTrue[Rest[NestList[#^2+4&, n, 2]], PrimeQ]; Select[Prime[ Range[ 3000]], fQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 21 2014 *) PROG (PARI) is(n)=my(q); isprime(p) && isprime(q=p^2+4) && isprime(q^2+4) \\ Charles R Greathouse IV, Nov 06 2013 CROSSREFS Cf. A062324, A116887, A116888, A116889, A045637, A062324, A165218. Sequence in context: A339565 A241768 A054365 * A163064 A020069 A020024 Adjacent sequences:  A116883 A116884 A116885 * A116887 A116888 A116889 KEYWORD nonn AUTHOR Giovanni Resta, Feb 27 2006 EXTENSIONS Edited by N. J. A. Sloane, Sep 18 2009 at the suggestion of R. J. Mathar STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 22 13:29 EDT 2021. Contains 343177 sequences. (Running on oeis4.)