This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A116881 Row sums of triangle A116880 (generalized Catalan C(1,2)). 2
 1, 4, 23, 150, 1037, 7408, 54035, 399850, 2990105, 22540260, 170991647, 1303789534, 9983164453, 76711854040, 591236890667, 4568611684306, 35382196437041, 274564234870732, 2134337640202295, 16617270658727878 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA a(n) = Sum_{m=0,..,n} A116880(n,m), n>=0. G.f.: (32*x^2+12*sqrt(1-8*x)*x-4*x)/(-32*x^3+sqrt(1-8*x)*(8*x^2+7*x-1)-36*x^2-3*x+1). - Vladimir Kruchinin, Nov 23 2014 a(n) = sum(k=0..n, ((k+1)^2*binomial(2*(n+1),n-k)*binomial(n+k+2,n+1))/((n+k+1)*(n+k+2))). - Vladimir Kruchinin, Nov 23 2014 a(n) ~ 2^(3*n+3) / (9*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 23 2014 Conjecture: n*(3*n-4)*a(n) +(-21*n^2+43*n-10)*a(n-1) -4*(3*n-1)*(2*n-1)*a(n-2)=0. - R. J. Mathar, Jun 22 2016 MATHEMATICA CoefficientList[Series[(32 x^2 + 12 Sqrt[1 - 8 x] x - 4 x) / (-32 x^3 + Sqrt[1 - 8 x] (8 x^2 + 7 x - 1) - 36 x^2 - 3 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 23 2014 *) PROG (Maxima) a(n):=sum(((k+1)^2*binomial(2*(n+1), n-k)*binomial(n+k+2, n+1))/((n+k+1)*(n+k+2)), k, 0, n); /* Vladimir Kruchinin, Nov 23 2014 */ CROSSREFS Sequence in context: A020079 A146964 A194006 * A107089 A193113 A192730 Adjacent sequences:  A116878 A116879 A116880 * A116882 A116883 A116884 KEYWORD nonn,easy AUTHOR Wolfdieter Lang, Mar 24 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 17:59 EST 2019. Contains 329960 sequences. (Running on oeis4.)