OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = Sum_{m=0,..,n} A116880(n,m), n>=0.
G.f.: (32*x^2+12*sqrt(1-8*x)*x-4*x)/(-32*x^3+sqrt(1-8*x)*(8*x^2+7*x-1)-36*x^2-3*x+1). - Vladimir Kruchinin, Nov 23 2014
a(n) = sum(k=0..n, ((k+1)^2*binomial(2*(n+1),n-k)*binomial(n+k+2,n+1))/((n+k+1)*(n+k+2))). - Vladimir Kruchinin, Nov 23 2014
a(n) ~ 2^(3*n+3) / (9*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 23 2014
Conjecture: n*(3*n-4)*a(n) +(-21*n^2+43*n-10)*a(n-1) -4*(3*n-1)*(2*n-1)*a(n-2)=0. - R. J. Mathar, Jun 22 2016
MATHEMATICA
CoefficientList[Series[(32 x^2 + 12 Sqrt[1 - 8 x] x - 4 x) / (-32 x^3 + Sqrt[1 - 8 x] (8 x^2 + 7 x - 1) - 36 x^2 - 3 x + 1), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 23 2014 *)
PROG
(Maxima) a(n):=sum(((k+1)^2*binomial(2*(n+1), n-k)*binomial(n+k+2, n+1))/((n+k+1)*(n+k+2)), k, 0, n); /* Vladimir Kruchinin, Nov 23 2014 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Mar 24 2006
STATUS
approved