login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A116860 Triangle read by rows: T(n,k) is the number of partitions into distinct odd parts with smallest part k (n>=1, k>=1). 3
1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 1, 0, 1, 0, 1, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,50

COMMENTS

Row 2 has no terms, row 2n-1 has 2n-1 terms, row 4n has 2n-1 terms, row 4n+2 for n>=1 has 2n-1 terms. Row sums are A000700. T(n,1) = A027349(n). Sum_{k>=1} k*T(n,k) = A092319(n).

Within those rows, T(n, k) = 0 occurs with an odd k iff n is odd and 2*floor((n+3)/6) - 1 <= k < n. - Álvar Ibeas, Aug 03 2020

LINKS

Alois P. Heinz, Rows n = 1..200, flattened

FORMULA

G.f.: Sum_(t^(2*j-1)*x^(2*j-1)*Product_(1+x^(2*i-1), i=j+1..infinity), j=1..infinity).

For k even, T(n, k) = 0. For k odd, T(n, n) = 1 and, if k < n, T(n, k) = Sum_{i > k} T(n - k, i). - Álvar Ibeas, Aug 03 2020

EXAMPLE

T(25,3) = 3 because we have [17,5,3], [15,7,3] and [13,9,3].

Triangle starts:

1;

{};

0,0,1;

1;

0,0,0,0,1;

1;

0,0,0,0,0,0,1;

1,0,1;

MAPLE

g:=sum(t^(2*j-1)*x^(2*j-1)*product(1+x^(2*i-1), i=j+1..30), j=1..30): gser:=simplify(series(g, x=0, 52)): for n from 1 to 19 do P[n]:=sort(coeff(gser, x^n)) od: d:=proc(n) if n mod 2 = 1 then n elif n=2 then 0 elif n mod 4 = 0 then n/2-1 else n/2-2 fi end: 1; {}; for n from 3 to 19 do seq(coeff(P[n], t^j), j=1..d(n)) od; # yields sequence in triangular form

MATHEMATICA

imax = 20;

s = Sum[t^(2 j - 1)*x^(2 j - 1)*Product[1 + x^(2 i - 1), {i, j + 1, imax}], {j, 1, imax}] + O[x]^imax;

Rest /@ DeleteCases[CoefficientList[#, t]& /@ CoefficientList[s, x], {}] // Flatten (* Jean-François Alcover, May 22 2018 *)

CROSSREFS

Cf. A000700, A027349, A092319, A116857.

Sequence in context: A086080 A281477 A070139 * A179391 A332016 A083850

Adjacent sequences:  A116857 A116858 A116859 * A116861 A116862 A116863

KEYWORD

nonn,tabf

AUTHOR

Emeric Deutsch, Feb 27 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 16:50 EDT 2020. Contains 337291 sequences. (Running on oeis4.)