login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A116857 Triangle read by rows: T(n,k) is the number of partitions of n into distinct odd parts, the largest of which is k (n>=1, k>=1). 1
1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,137

COMMENTS

Both rows 2n-1 and 2n have 2n-1 terms each. Row sums yield A000700. T(n,2k)=0 Sum(k*T(n,k),k>=1)=A092316(n).

LINKS

Table of n, a(n) for n=1..200.

FORMULA

G.f.=sum(t^(2j-1)*x^(2j-1)*product(1+x^(2i-1), i=1..j-1), j=1..infinity).

EXAMPLE

T(20,11)=2 because we have [11,9] and [11,5,3,1].

T(30,17)=3 because we have [17,13],[17,9,3,1] and [17,7,5,1].

Triangle starts:

1;

0;

0,0,1;

0,0,1;

0,0,0,0,1;

0,0,0,0,1;

0,0,0,0,0,0,1;

0,0,0,0,1,0,1;

MAPLE

g:=sum(t^(2*j-1)*x^(2*j-1)*product(1+x^(2*i-1), i=1..j-1), j=1..30): gser:=simplify(series(g, x=0, 22)): for n from 1 to 20 do P[n]:=sort(coeff(gser, x^n)) od: for n from 1 to 20 do seq(coeff(P[n], t^j), j=1..2*ceil(n/2)-1) od; # yields sequence in triangular form

CROSSREFS

Cf. A092316.

Sequence in context: A105348 A016406 A129182 * A322338 A158971 A121467

Adjacent sequences:  A116854 A116855 A116856 * A116858 A116859 A116860

KEYWORD

nonn,tabf

AUTHOR

Emeric Deutsch, Feb 24 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 20 07:42 EDT 2019. Contains 321345 sequences. (Running on oeis4.)