

A116853


Difference triangle of factorial numbers read by upward diagonals.


4



1, 1, 2, 3, 4, 6, 11, 14, 18, 24, 53, 64, 78, 96, 120, 309, 362, 426, 504, 600, 720, 2119, 2428, 2790, 3216, 3720, 4320, 5040, 16687, 18806, 21234, 24024, 27240, 30960, 35280, 40320
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Leftmost column of the triangle = A000255, inverse binomial transform of the factorial numbers. First difference row of factorial numbers = A001563, second difference row = A001564, third difference row = A001565, fourth difference row = A001688, fifth difference row = A001689.


LINKS

Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened


FORMULA

Take successive difference rows of factorial numbers n! starting with n=1. Reorient into a triangle format.


EXAMPLE

Starting with 1, 2, 6, 24, 120...we take the first difference row (A001563), second, third, etc. Reorient into a flush left format, getting:
1;
1, 2;
3, 4, 6;
11, 14, 18, 24;
53, 64, 78, 96, 120;
309, 362, 426, 504, 600;
...


PROG

(Haskell)
a116853 n k = a116853_tabl !! (n1) !! (k1)
a116853_row n = a116853_tabl !! (n1)
a116853_tabl = map reverse $ f (tail a000142_list) [] where
f (u:us) vs = ws : f us ws where ws = scanl () u vs
 Reinhard Zumkeller, Aug 31 2014


CROSSREFS

Cf. A000255, A001563, A001564, A001565, A001688, A001689.
Cf. A180191 (row sums), A246606 (central terms), A000142.
Sequence in context: A018297 A050886 A079310 * A066615 A133951 A166081
Adjacent sequences: A116850 A116851 A116852 * A116854 A116855 A116856


KEYWORD

nonn,tabl


AUTHOR

Gary W. Adamson, Feb 24 2006


STATUS

approved



