login
Number of partitions of n-th semiprime into 2 squares.
1

%I #12 Jun 10 2020 22:45:50

%S 1,0,1,1,0,0,0,0,2,1,0,1,0,0,0,0,1,0,0,0,1,0,2,0,1,0,1,2,0,0,0,0,0,0,

%T 1,0,0,0,0,1,1,0,0,0,0,0,0,0,2,1,0,0,0,0,0,2,0,1,0,2,0,1,0,1,0,2,0,0,

%U 0,0,0,0,1,0,2,1,0,0,0,0,0,0,0,0,2,0,1

%N Number of partitions of n-th semiprime into 2 squares.

%C See also A000161 Number of partitions of n into 2 squares (when order does not matter and zero is allowed).

%C From _Robert Israel_, Jun 10 2020: (Start)

%C a(1)=1 if A001358(n) = p^2 where p is not in A002144.

%C a(n)=1 if A001358(n) = 2*p where p is in A002144.

%C a(n)=2 if A001358(n) = p*q where p and q are in A002144 (not necessarily distinct).

%C a(n)=0 otherwise. (End)

%H Robert Israel, <a href="/A116852/b116852.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A000161(A001358(n)).

%e a(1) = 1 because semiprime(1) = 4 = 0^2 + 2^2, the unique sum of squares.

%e a(2) = 0 because semiprime(2) = 6 has no decomposition into sum of 2 squares because it has a prime factor p == 3 (mod 4) with an odd power.

%e a(3) = 1 because semiprime(3) = 9 = 0^2 + 3^2, the unique sum of squares.

%e a(4) = 1 because semiprime(4) = 10 = 2*5 = 1^2 + 3^2.

%e a(9) = 2 because semiprime(9) = 25 = 0^2 + 5^2 = 3^2 + 4^2, two distinct ways.

%e a(23) = 2 because semiprime(23) = 65 = 5*13 = 1^2 + 8^2 = 4^2 + 7^2.

%e a(28) = 2 because semiprime(28) = 85 = 5*17 = 2^2 + 9^2 = 6^2 + 7^2.

%e a(49) = 2 because semiprime(49) = 145 = 5*29 = 1^2 + 12^2 = 8^2 + 9^2.

%e a(56) = 2 because semiprime(56) = 169 = 0^2 + 13^2 = 5^2 + 12^2.

%e a(60) = 2 because semiprime(60) = 185 = 5*37 = 4^2 + 13^2 = 8^2 + 11^2.

%p R:= NULL: count:= 0:

%p for n from 4 while count < 100 do

%p if numtheory:-bigomega(n) = 2 then

%p count:= count+1;

%p F:= ifactors(n)[2];

%p if nops(F) = 1 then

%p if F[1][1] mod 4 = 1 then v:= 2

%p else v:= 1

%p fi

%p elif F[1][1]=2 and F[2][1] mod 4 = 1 then v:= 1

%p elif F[1][1] mod 4 = 1 and F[2][1] mod 4 = 1 then v:= 2

%p else v:= 0

%p fi;

%p R:= R, v;

%p fi

%p od:

%p R; # _Robert Israel_, Jun 10 2020

%Y Cf. A000161, A001358.

%K easy,nonn

%O 1,9

%A _Jonathan Vos Post_, Mar 15 2006

%E More terms from _Giovanni Resta_, Jun 15 2016