This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A116799 Triangle read by rows: T(n,k) is the number of partitions of n into odd parts such that the largest part is k (n>=1, k>=1). 2
 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 2, 0, 1, 1, 0, 2, 0, 1, 0, 1, 1, 0, 2, 0, 2, 0, 1, 1, 0, 3, 0, 2, 0, 1, 0, 1, 1, 0, 3, 0, 3, 0, 2, 0, 1, 1, 0, 3, 0, 4, 0, 2, 0, 1, 0, 1, 1, 0, 4, 0, 4, 0, 3, 0, 2, 0, 1, 1, 0, 4, 0, 5, 0, 4, 0, 2, 0, 1, 0, 1, 1, 0, 4, 0, 6, 0, 5, 0, 3, 0, 2, 0, 1, 1, 0, 5, 0, 7, 0, 6 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,16 COMMENTS Both rows 2n-1 and 2n have 2n-1 terms. Row sums yield A000009. T(n,2k)=0. T(n,3)=A002264(n). Sum(k*T(n,k),k>=1)=A092322(n). LINKS FORMULA G.f.=sum(t^(2j-1)*x^(2j-1)/product(1-x^(2i-1), i=1..j), j=1..infinity). EXAMPLE T(10,5)=3 because we have [3,3,3,1], [3,3,1,1,1,1] and [3,1,1,1,1,1,1,1]. Triangle starts: 1; 1; 1,0,1; 1,0,1; 1,0,1,0,1; 1,0,2,0,1; MAPLE g:=sum(t^(2*j-1)*x^(2*j-1)/product(1-x^(2*i-1), i=1..j), j=1..40): gser:=simplify(series(g, x=0, 22)): for n from 1 to 16 do P[n]:=sort(coeff(gser, x^n)) od: for n from 1 to 16 do seq(coeff(P[n], t^j), j=1..2*ceil(n/2)-1) od; # yields sequence in triangular form CROSSREFS Cf. A000009, A002264, A092322, A116856. Sequence in context: A177416 A087606 A271368 * A057556 A112761 A284320 Adjacent sequences:  A116796 A116797 A116798 * A116800 A116801 A116802 KEYWORD nonn,tabf AUTHOR Emeric Deutsch, Feb 24 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 10:41 EDT 2019. Contains 328257 sequences. (Running on oeis4.)