OFFSET
1,16
COMMENTS
FORMULA
G.f.=sum(t^(2j-1)*x^(2j-1)/product(1-x^(2i-1), i=1..j), j=1..infinity).
EXAMPLE
T(10,5)=3 because we have [3,3,3,1], [3,3,1,1,1,1] and [3,1,1,1,1,1,1,1].
Triangle starts:
1;
1;
1,0,1;
1,0,1;
1,0,1,0,1;
1,0,2,0,1;
MAPLE
g:=sum(t^(2*j-1)*x^(2*j-1)/product(1-x^(2*i-1), i=1..j), j=1..40): gser:=simplify(series(g, x=0, 22)): for n from 1 to 16 do P[n]:=sort(coeff(gser, x^n)) od: for n from 1 to 16 do seq(coeff(P[n], t^j), j=1..2*ceil(n/2)-1) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Feb 24 2006
STATUS
approved